
Proceedings

A polynomial-time approximation to a minimum dominating
set in a graph†

Frank Angel Hernández Mira 1* , Ernesto Parra Inza 2, , José María Sigarreta Almira 3 and Nodari Vakhania 2

����������
�������

Citation: Hernández Mira, F.A.;

Parra Inza, E.; Sigarreta Almira, J.M.;

Vakhania N. A polynomial-time

approximation to a minimum

dominating set in a graph. Algorithms

2021, 1, 0. https://doi.org/

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero; fmira8906@gmail.com
2 Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos; eparrainza@gmail.com

(E.P.I), nodari@uaem.mx (N.V)
3 Facultad de Matemáticas, Universidad Autónoma de Guerrero; josemariasigarretaalmira@hotmail.com
* Correspondence: fmira8906@gmail.com; Tel.: +52 7442248438
† 1st International Online Conference on Algorithms (IOCA 2021), https://ioca2021.sciforum.net/, September

27 - October 10/2021.

Abstract: A dominating set of a graph G = (V, E) is a subset of vertices S ⊆ V such that every vertex 1

v ∈ V \ S has at least one neighbor in set S. Finding a dominating set with the minimum cardinality 2

in a graph G = (V, E) is known to be NP-hard. A polynomial-time approximation algorithm for this 3

problem, described here, works in two stages. At the first stage a dominant set is generated by a 4

greedy algorithm, and at the second stage this dominating set is purified (reduced). The reduction 5

is achieved by the analysis of the flowchart of the algorithm of the first stage and a special kind of 6

clustering of the dominating set generated at the first stage. The clustering of the dominating set 7

naturally leads to a special kind of a spanning forest of graph G, which serves as a basis for the 8

second purification stage. The greedy algorithm of the first stage has essentially the same properties 9

as the earlier known state-of-the-art algorithms for the problem. The second purification stage results 10

in an essential improvement of the quality of the dominant set created at the first stage. We have 11

measured the practical behavior of the algorithm of both stages on randomly generated problem 12

instances. We have used two different random methods to generate our graphs, each of them yielding 13

graphs with different structure. 14

Keywords: graph; dominating set; approximation ratio; approximation algorithm; time complexity 15

1. Introduction 16

Problem description. One of the most studied problems in combinatorial optimiza- 17

tion and graph theory are covering and partitioning problems in graphs. A subset of 18

vertices in a graph is a dominating set if every vertex of that graph which is not in that 19

subset has at least one neighbor in that subset. More formally, given a simple connected 20

undirected graph G = (V, E) with |V| = n vertices and |E| = m edges, a set S ⊆ V is 21

called a dominating set of that graph if for all v ∈ V either v ∈ S or there exists a vertex u 22

in V \ S such that edge (v, u) ∈ E. A widely studied such problem is the dominating set 23

problem. The MINIMUM DOMINATING SET problem consists in determining the minimum 24

cardinality of a dominating set of G = (V, E). 25

The domination number of graph G, denoted as γ(G), is the minimum cardinality 26

of a dominating set for that graph; we shall refer to a corresponding dominating set of 27

cardinality γ(G) as a γ(G)-set. A dominating set is minimal if by removing any of its 28

elements the resultant reduced set becomes non-dominating. In fact, it is not so difficult to 29

construct a polynomial-time algorithm that generates a minimal dominating set. However, 30

as one can easily see, not necessarily a minimal dominating set approximates well a 31

minimum dominating set. For instance, given a minimal dominating set, there may exist a 32

non-minimal dominating set with a much smaller number of vertices. 33

Algorithms 2021, 1, 0. https://doi.org/10.3390/a1010000 https://www.mdpi.com/journal/algorithms

https://ioca2021.sciforum.net/
https://www.mdpi.com
https://orcid.org/0000-0001-5480-8257
https://orcid.org/0000-0002-7901-4936
https://orcid.org/0000-0002-9013-9334
https://www.mdpi.com/article/10.3390/a1010000?type=check_update&version=1
https://doi.org/10.3390/a1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://ioca2021.sciforum.net/
https://doi.org/10.3390/a1010000
https://www.mdpi.com/journal/algorithms

Algorithms 2021, 1, 0 2 of 8

The reader is referred to Haynes et al. [1] for further details on the basic graph termi- 34

nology. The problem of domination in graphs was mathematically formalized by Berge 35

and Ore in [2] and [3], respectively. Currently, this topic has been detailed in the two 36

well-known books by Haynes, Hedetniemi, and Slater in [1] and [4]. The theory of domina- 37

tion in graphs is an area of increasing interest in discrete mathematics and combinatorial 38

computing, in particular, because of a number of important real-life applications. Such 39

applications arise, for instance, during the analysis of social networks (see Kelleher and 40

Cozzens in [5]), in efficient identification of web communities (see Flake et al. in [6]), in 41

bioinformatics (see Haynes et al. in [7]) and food webs (see Kim et al. in [8]), in the study 42

of transmission of information in networks associated with defense systems (see Powel in 43

[9]), also in distributed computing (see Kuhn et al. in [10], Kuhn and Wattenhofer in [11]). 44

The variations of the domination problem and their applications have been widely studied, 45

see for example, [1] and [4]. 46

Our contributions. In this paper we propose a polynomial-time approximation al- 47

gorithm, for the MINIMUM DOMINATING SET problem, which runs in two stages. The 48

dominating set created at the first stage is reduced at the second purification stage. Al- 49

though our greedy algorithm of stage 1 was developed independently from the earlier 50

known algorithm, it turned out that we have used a similar heuristic approach as the above 51

mentioned algorithms from [12] and [13] (a detailed comparison of our algorithm with 52

these two algorithms and their descriptions are given later in Sections 2 and 4). The reduc- 53

tion of the dominating set of stage 1 is achieved at stage 2 by the analysis of the flowchart 54

of the algorithm of the first stage and a special kind of clustering of the dominating set 55

generated at the first stage. The clustering of the dominating set naturally leads to a special 56

kind of a spanning forest of the original graph G, which serves as a basis for the purification 57

stage. 58

In the next section we introduce the greedy algorithm of stage 1 and we describe our 59

purification procedure of stage 2 moreover, study some useful properties of the dominating 60

set delivered by that procedure. In Section 3 we report our experimental results. 61

2. Materials and Methods 62

2.1. Stage 1: Algorithm_Basic 63

In this subsection we describe our greedy algorithm of stage 1, Algorithm_Basic. It 64

works on a number of iterations. Denote by Sh the dominant set formed by the algorithm 65

by iteration h; Sh, Sh = V \ Sh, is the complement of the dominant set of iteration h. Initially, 66

S0 := ∅. At each iteration h > 0 the dominant set Sh of iteration h is obtained by adding 67

vertex vh ∈ Sh−1 to the current dominant set Sh−1 of the previous iteration. 68

At iteration h > 0, the selection of vertex vh is based on the so-called active degree of 69

the vertices in set Sh−1. An active degree of vertex v ∈ Sh−1 at iteration h is a derivation of 70

the degree of that vertex in graph G that does not take into account the vertices already 71

belonging to set Sh−1 and the vertices adjacent to a vertex in set Sh−1. At iteration h, among 72

all edges adjacent to vertex v, edge (v, x) is not counted in the modified degree of vertex 73

v if either x ∈ Sh−1 or x ∈ Sh−1 but x is a neighbor of a vertex in the set Sh−1. So the 74

active degree of vertex v at iteration h is the number of neighbors of vertex v in set Sh−1 not 75

counting those vertices (neighbors of vertex v) in set Sh−1 which are adjacent to a vertex in 76

set Sh−1. 77

Initially at iteration 0, it sets S0 := ∅ (S0 := V, respectively). The initial settings are 78

updated iteratively at each iteration h > 0 resulting in the current sets of vertices Sh and 79

Sh, correspondingly (the partially dominant set and the corresponding complement). At 80

every iteration h > 0 vertex vh ∈ Sh−1 with the maximum active degree is selected and sets 81

Sh−1 and Sh−1 are modified accordingly resulting in the updated sets Sh and Sh (vertex 82

vh is moved from set Sh−1 to the set Sh−1 resulting in the updated sets Sh and Sh). So at 83

every iteration h > 0, the updated set Sh contains one more vertex than set Sh−1 of the 84

previous iteration, whereas the updated set Sh contains one less vertex than the set Sh−1 of 85

Algorithms 2021, 1, 0 3 of 8

the previous iteration. The algorithm halts at iteration hmax when S = Shmax is already a 86

dominating set. In Algorithm 1, a formal description is shown. 87

Denote by Gh the subgraph of graph G induced by set Sh. We distinguish two kinds 88

of vertices in graph Gh (in set Sh). Consider iteration h when the set Sh is formed according 89

to the made selection of vertex vh. We call a vertex p ∈ Sh−1 adjacent to vertex vh in graph 90

Gh−1 a pending vertex dependent on vertex vh by iteration h if there is no vertex in set Sh−1 91

adjacent to vertex p (this notion will later be used at the purification stage). 92

Let p be a pending vertex dependent on vertex vh′ by iteration h (h′ ≤ h). For the 93

convenience, we shall consider an edge (p, v) ∈ Gh incident to vertex p in graph Gh as 94

a special kind of a two-directional edge. The direction of edge (v, p) incident to vertex p 95

is marked as dummy, whereas the direction of the edge incident from vertex p, (p, v), is 96

treated normally. Accordingly, we shall consider the graph Gh (set Sh) empty if it contains 97

only pending vertices (ones which are already covered by at least one vertex of set Sh). 98

The following remark gives a sufficient optimality condition for the algorithm Algo- 99

rithm_Basic, and will also be useful in the estimation of the approximation ratio of our 100

overall algorithm later on. 101

Remark 1. If |Shmax | ≤ 2 then Shmax is a minimum dominating set. 102

Proof. It will suffice to consider the two cases when γ(G) = 1 or γ(G) = 2. Indeed, 103

suppose, first, that γ(G) = 1. Then there exists vertex v ∈ V adjacent to every other vertex 104

in V. Then at the initial iteration 0 of Algorithm_Basic the (active) degree of vertex v would 105

be the maximum and this vertex will be selected as v0, and, Shmax := {v} (among all such 106

vertices, ties can clearly be broken arbitrarily). If now Shmax = 2, γ(G) cannot be less than 107

2. 108

2.2. Stage 2: The purification procedure for Algorithm_Basic 109

In this subsection we complement Algorithm_Basic with the second purification stage, 110

which eliminates specially determined redundant vertices from the dominating set Shmax 111

(the output of Algorithm_Basic). A vertex x ∈ Shmax is said to be purified at stage 2 if it 112

is eliminated from set S = Shmax . The purification procedure uses not only the output of 113

Algorithm_Basic but also its flowchart. The following definitions are useful for the analysis 114

of the flowchart of Algorithm_Basic. 115

Suppose at some iteration h of Algorithm_Basic a pending vertex p, dependent on 116

vertex v ∈ Sh−1 gets included in set Sh. Then we call pair (v, p) tied. Notice that at any 117

iteration h there may arise at most one new tied pair. Alternatively, we consider (v, p) as 118

an edge. Suppose at iteration h of Algorithm_Basic, vertex z adjacent to a pending vertex p 119

dependent on vertex v, gets included in set Sh. Then we call pair (v, z) semi-tied. 120

Proposition 1. If there arise neither tied nor semi-tied pairs of vertices during the execution of 121

Algorithm_Basic, then Shmax is a minimum dominating set for graph G. 122

Proof. By the way of contradiction, suppose there exists a dominating set S′ such that 123

|S′| < |Shmax |. If S′ ⊂ Shmax then there exist v ∈ Shmax and u ∈ S′ such that u is adjacent to v. 124

If (v, u) is not a tied pair, then there is a vertex z ∈ Shmax such that edge (v, z) is a tied pair 125

(since consider that u is inserted before v either v was dependent on u or it was dependent 126

on z, in any case a tied pair is generated), which is a contradiction. 127

Otherwise, note that for every vertex v ∈ Shmax \ S′, if N(v) ∩ (Shmax ∩ S′) 6= ∅, then 128

there is a vertex u ∈ Shmax ∩ S′ such that u is adjacent to v and a similar analysis as above 129

leads to a contradiction. Now, by pigeonhole principle there exists a vertex u in S′ having 130

at least two neighbors, say v and w in set Shmax . Also, notice that u ∈ Shmax . Similar to 131

previous analysis, if (v, w) is not a semi-tied pair, then there is a vertex z ∈ Shmax such that 132

u is a dependent vertex on z. So, (v, z) or (w, z) is a semi-tied pair, which is a contradiction. 133

It follows that Shmax is a dominating set of minimum cardinality and Algorithm_Basic is 134

optimal. 135

Algorithms 2021, 1, 0 4 of 8

Algorithm 1 Algorithm_Basic

Input: A graph G.
Output: A dominating set S = Sh.
h := 0;
v0 := any vertex with the maximum degree in graph G;
S1 := {v0};

{ iterative step }
while Sh is not a dominating set of graph G do

h := h + 1;
vh := any vertex with the maximum active degree in set Sh−1;
Sh := Sh−1 ∪ {vh};

end while

Clusters and the induced spanning trees. A collection of tied pairs define indepen- 136

dent structural components that reflect the flowchart of Algorithm_Basic. We define these 137

components now. 138

In such a sense, we shall refer to a sequence of the tied pairs of the form (v, p1), (p1, p2), 139

(p2, p3), . . . , (pl−1, pl) as a chain. We may look at a chain as a sequence of the corresponding 140

edges, a path from vertex v to vertex pl . Two different chains of tied pairs have either (i) 141

no vertex in common or (ii) solely one vertex in common or (iii) one or more tied pairs in 142

common (a sub-chain of tied pairs of vertices). We shall refer to a maximum set (one with 143

the maximum cardinality) of two or more different chains such that, for any two different 144

chains from the set either (ii) or (iii) is satisfied, as a cluster of chains, or a cluster, for short. 145

As it is easily seen, a cluster C possesses a single vertex such that all chains of that 146

cluster have that vertex in common. We call this vertex the root of cluster C and denote it 147

by r(C). We note that the structure of a cluster does not generate cycles among its vertices. 148

The following remark is straightforward. 149

Description of the purification procedure. We are ready to describe our purification 150

procedure that purifies (reduces) dominant set S, the output of Algorithm_Basic. First we 151

describe the basic version of the procedure which we extend a bit later. The procedure 152

purifies trees T(C1), . . . , T(Ck) in this order. Iteratively, it purifies the vertices of the next 153

tree T(Ci) and outputs the purified tree, that we denote by T′(Ci); Th(Ci) is the partially 154

purified tree of iteration h, and Th is the corresponding forest. The output of all the k calls 155

of the procedure is a purified forest T′. 156

At iteration h of the procedure for cluster Ci, let v ∈ Th(Ci). We call vertex x ∈ V(G) \ 157

V(T(C1) ∪ · · · ∪ T(Ck)) a semi-private neighbor of vertex v if vertex v is the only (remained) 158

neighbor of vertex x in the current purified forest T′(C1), . . . , T′(Ci−1), Th−1(Ci), T′(Ci+1), 159

. . . , T′(Ck). Note that, not necessarily, x is a private neighbor of vertex v in graph G (a 160

private neighbor is also a semi-private one for vertex v, but not necessarily vice-versa). 161

At iteration h, we distinguish two types of the vertices in tree Th(Ci): the currently 162

purified ones and ones which were set as non-purified at some previous iteration, the so- 163

called firm ones. The procedure carries out a four-degree bottom-up look-ahead checking. 164

Given a yet unprocessed firm vertex, its parent and grandparent are purified and the 165

grand-grandparent is set to be firm (this rule has an exception which is explicitly stated 166

a bit later). Thus an up-going chain of four vertices (a, b, c, d), that we call a quadruple, is 167

considered at once so that the endpoint a of that quadruple is already firm, the endpoint 168

d, is set firm and the intermediate vertices are set purified (in general, a processed chain 169

(a, . . . , d) may contain from two to four vertices; for the sake of simplicity we shall not 170

distinguish them and shall refer to them as quadruples). 171

The purification procedure starts by purifying all the leaves with no (private or) semi- 172

private neighbor in tree T(Ci). If leaf v is so purified, then its parent is set to be firm. 173

Otherwise (leaf v has a semi-private neighbor), leaf v is set firm. Once all the leaves are so 174

processed, the corresponding firm vertices form the initial set PF0(Ci) of the firm vertices 175

in tree T0(Ci), the pending firm ones. 176

Algorithms 2021, 1, 0 5 of 8

Iteratively, at an iteration h > 0, the highest level leftmost pending firm vertex with 177

a non-firm parent is looked for. We denote the chosen in this way vertex at iteration h by 178

ah. If there exists no vertex ah, i.e., the parent of any pending firm vertex is already firm or 179

there is no pending firm vertex having a parent (the highest level pending firm vertex is 180

the root), then the purification procedure halts. Once vertex a is selected, the quadruple 181

(a, b, c, d) with a = ah is determined and is processed as follows: The parent b of vertex ah 182

is purified and its grandparent c (if it exists) is also purified if vertex c has not earlier been 183

set firm (from another up-going branch) or c is the root. In the latter case, the root is set 184

firm. If vertex c is not the root, its parent d is set to be firm (unless it was already set firm at 185

an earlier iteration). In this way, at most two vertices b and c, predecessors of vertex ah are 186

purified from vertex ah at iteration h. 187

Once quadruple (a, b, c, d) is processed, the current set of the pending firm vertices 188

PFh−1(Ci) is updated by deleting from it vertex a (which becomes a non-pending firm 189

vertex), and by including vertex d into the updated set (a new pending firm vertex). 190

Lemma 1. If the basic version of the purification procedure purifies vertex b ∈ Th(Ci) at iteration 191

h then that vertex cannot be set firm at any later iteration. 192

Proof. Let vertex b be purified from vertex ah at iteration h. By way of contradiction, 193

suppose vertex b is set firm from vertex ag at iteration g > h. By the construction of 194

the procedure, there must exist two intermediate vertices between vertices ag and b , as 195

otherwise vertex b would not have been set firm. But then the level of vertex ag is greater 196

than that of vertex ah and hence the procedure could not select vertex ah at iteration h as 197

the highest level pending firm vertex. 198

From here on, we will refer to the augmented version of the purification procedure as 199

the purification procedure, and to the overall two-stage algorithm as Algorithm_Extended. It is 200

a known fact that the number of vertices in a minimum dominating set is bounded above 201

by n
2 , i.e., γ(G) ≤ n

2 , for every simple graph G of order n, and this bound is tight. We prove 202

that the same bound is valid for the dominating set delivered by Algorithm_Extended. 203

Lemma 2. |S∗| ≤ n
2 , where S∗ is the dominating set returned by Algorithm_Extended. 204

Proof. Let us consider any (non-purified) vertex v ∈ T∗(C). Only the following two cases 205

are possible. Either (1) vertex v was left non-purified as a son of a purified vertex z ∈ T(C) 206

or as the parent of such a vertex, or (2) vertex v was left non-purified as the semi-private 207

neighbor of some vertex x. In case (1) there is a neighbor of vertex v in the complement 208

S̄∗ (the corresponding purified vertex z), and in case (2) there exist vertex x from S̄∗. Thus 209

with any vertex v ∈ S∗ a unique vertex from S̄∗ is associated. Hence, |S∗| ≤ n
2 . 210

3. Results and Discussion 211

In this final section we describe our computation experiments. We have implemented 212

our algorithms in C++ using Windows 10 operative system for 64 bits on a personal 213

computer with Intel Core i7-9750H (2.6 GHz) and 16 GB of RAM DDR4. We have generated 214

two sets of the problem instances obtained by using two different pseudo-random methods 215

to generate the graphs. For the first class, each new edge was added in between two yet 216

non-adjacent vertices randomly until the corresponding size was attained. For the second 217

class of instances, we have followed a more particular rules while adding each new edge 218

according to the chosen structure (e.g., see the example of a graph in Figure 1). 219

The results for the first class of instances are shown in Table 1. Over all the tested 220

problem instances, we have obtained in average 0.89% of the reduction of the size of the 221

dominating sets at stage 2. We may also observe that the reduction of the size of the 222

dominating sets at the purification stage becomes more notable as the order of the graphs 223

increases. 224

Algorithms 2021, 1, 0 6 of 8

No. Order Size Clusters Algorithm_Basic Algorithm_Extended Purification

1 841 1647 32 155 154 1
2 908 978 76 235 231 4
3 809 1106 46 178 178 0
4 992 1365 46 226 223 3
5 984 1465 58 208 208 0
6 1011 1811 36 205 205 0
7 1196 2189 42 228 227 1
8 1533 1897 93 363 357 6
9 1538 1722 80 377 373 4
10 1673 3116 67 322 319 3
11 2041 2139 141 519 509 10
12 2393 2812 142 573 564 9
13 2031 3157 114 428 424 4
14 2562 3475 148 578 575 3
15 2064 3438 83 418 415 3
16 3048 3262 222 791 779 12
17 3286 6146 138 629 624 5
18 3089 4966 128 633 629 4
19 3127 4376 177 686 678 8
20 3904 7687 151 725 724 1
21 4041 6344 170 837 829 8
22 4466 6895 200 930 921 9
23 4578 7988 185 901 894 7
24 4389 8482 163 818 817 1
25 4493 8911 171 818 816 2
26 5071 8385 231 1003 997 6
27 5964 8147 320 1326 1308 18
28 5342 8173 265 1112 1105 7
29 5427 7470 304 1203 1192 11
30 5346 8036 282 1133 1129 4
31 6041 6385 345 1536 1502 34
32 6786 7552 378 1692 1649 43
33 6052 7097 295 1452 1430 22
34 6956 11942 252 1378 1372 6
35 6820 12432 282 1305 1299 6
36 7042 11426 324 1419 1411 8
37 7061 11426 313 1439 1422 17
38 7922 15072 269 1465 1464 1
39 7052 10747 343 1480 1469 11
40 7841 8791 442 1927 1881 46
41 8051 10426 449 1831 1813 18
42 8179 13192 388 1664 1654 10
43 8684 17256 303 1592 1588 4
44 8547 12357 461 1848 1837 11
45 8195 11525 465 1794 1783 11
46 9589 10256 496 2401 2359 42
47 9041 15010 415 1818 1805 13
48 9917 15763 408 2011 1997 14
49 9293 14002 439 1952 1937 15
50 9590 13364 519 2086 2067 19

Table 1: The results for the randomly generated graphs

The results for the second class of instances are shown in Table 2. These instances were 225

created with the intention to verify the efficiency of the purification stage for the graphs 226

for which the first stage would deliver a poor solution. Taking as an example the graph 227

depicted in Figure 1, we observe that, if we run Algorithm_Basic for that graph, it will first 228

include the central (bold) vertex into the formed dominant set, then it will add all the (gray) 229

Algorithms 2021, 1, 0 7 of 8

vertices adjacent to the former vertex to the formed dominant set, and then it will also 230

include all the (bold) vertices adjacent to the latter vertices in that set. We may observe such 231

a behavior of the algorithms of the first and the second stages with a significant reduction 232

of the number of vertices in the purified dominating sets for the problem instances of the 233

second class in Table 2. 234

Figure 1. A graph from the second class

No. Order Size Clusters Algorithm_Basic Algorithm_Extended Purification

1 3619 4588 1 1975 1646 329
2 3651 4468 1 1027 833 194
3 3773 4775 1 2059 1716 343
4 3795 4824 1 2071 1726 345
5 4016 4876 1 1129 916 213
6 4180 5286 1 2281 1901 380
7 4290 5491 1 1717 1431 286
8 4485 5643 1 1795 1496 299
9 4620 5885 1 1849 1541 308
10 4673 5714 1 1314 1066 248
11 4740 6020 1 1897 1581 316
12 4965 6039 1 1396 1132 264
13 5200 6597 1 2801 2401 400
14 5525 7056 1 2976 2551 425
15 5720 7279 1 3081 2641 440
16 5759 7309 1 3102 2659 443
17 5768 7084 1 1621 1315 306
18 5785 7403 1 3116 2671 445
19 5841 7096 1 1642 1332 310
20 6019 7728 1 3242 2779 463
21 6058 7664 1 3263 2797 466
22 6383 8126 1 3438 2947 491
23 6409 8115 1 3452 2959 493
24 6571 8055 1 1847 1498 349
25 6837 8580 1 3144 2695 449
26 7350 9291 1 3431 2941 490
27 7447 9015 1 2093 1698 395
28 7545 9464 1 3522 3019 503
29 7560 9565 1 3529 3025 504
30 7593 9242 1 2134 1731 403

Algorithms 2021, 1, 0 8 of 8

No. Order Size Clusters Algorithm_Basic Algorithm_Extended Purification

31 7665 9741 1 3578 3067 511
32 7680 9759 1 3585 3073 512
33 7812 9545 1 2195 1781 414
34 8396 10190 1 2359 1913 446
35 8550 10842 1 4561 3991 570
36 8688 10584 1 2441 1980 461
37 8715 10996 1 4649 4068 581
38 8820 11168 1 4705 4117 588
39 8835 11173 1 4713 4124 589
40 8865 11241 1 4729 4138 591
41 9076 11181 1 4951 4126 825
42 9142 11246 1 4987 4156 831
43 9406 11563 1 5131 4276 855
44 9626 11827 1 5251 4376 875
45 9648 11847 1 5263 4386 877
46 14033 17077 1 3946 3196 750
47 14910 18162 1 4192 3394 798
48 15787 19238 1 4439 3595 844
49 16664 20304 1 4685 3795 890
50 18418 22437 1 5178 4194 984

Table 2: The results of the generated second class graphs.

Author Contributions: The authors contributed equally to this research. Investigation, F.A.H.M., 235

E.P.I., J.M.S.A. and N.V.; writing—review and editing, F.A.H.M., E.P.I., J.M.S.A. and N.V. All authors 236

have read and agreed to the published version of the manuscript. 237

Funding: This work was partially supported by SEP PRODEP publication grant. The fourth author 238

was supported by SEP PRODEP 511/6 grant and CONACyT 2020-000019-01NACV-00008 grant. 239

Institutional Review Board Statement: Not applicable. 240

Informed Consent Statement: Not applicable. 241

Conflicts of Interest: The authors declare no conflict of interest. 242

References
1. Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. Domination in Graphs (Advanced Topics), 1998, Marcel Dekker Publications, New

York, 9780824700348.
2. Berge, C. (1962). The theory of graphs and its applications, Methuen and Co. Ltd., London.
3. O. Ore, Theory of Graphs, A. M. S. Colloquium Publications 38 (1962), 270 pages.
4. Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. Fundamentals of domination in graphs, 1998, volume 208 of Monographs and

Textbooks in Pure and Applied Mathematics., 9780824700331.
5. Kelleher, L. L., and Cozzens, M. B. Dominating sets in social network graphs. Mathematical Social Sciences 1988, 16(3), 267-279,

https://doi.org/10.1016/0165-4896(88)90041-8.
6. G. W. Flake, S. Lawrence, and C. L. Giles, Efficient Identification of Web Communities, Conference on Knowledge Discovery and Data

Mining 2000, 150-160, 10.1145/347090.347121.
7. Haynes, T., Knisley, D., Seier, E., and Zou, Y. A quantitative analysis of secondary RNA structure using domination based

parameters on trees. BMC bioinformatics 2006, 7(1), 108. https://doi.org/10.1186/1471-2105-7-108
8. Kim, B. J., Liu, J., Um, J., and Lee, S. I. Instability of defensive alliances in the predator-prey model on complex networks. Physical

Review E, 2005, 72(4). 10.1103/PhysRevE.72.041906
9. M. Powel, Alliance in graph, Proc. on th 255 of the USA Military Academy, 2004, 1350-1415.
10. Kuhn, F., Moscibroda, T., and Wattenhofer, R. What cannot be computed locally!. In Proceedings of the twenty-third annual ACM

symposium on Principles of distributed computing, 2004 (pp. 300-309). ACM. 10.1145/1011767.1011811
11. Kuhn, F., and Wattenhofer, R. Constant-time distributed dominating set approximation. Distributed Computing 2005, 17(4), 303-310.

https://doi.org/10.1007/s00446-004-0112-5
12. V. Chvátal, A Greedy Heuristic for the Set Covering problem. Mathematics of Operations Research 4, (1979) 233-235.
13. Parekh, A. K. Analysis of a greedy heuristic for finding small dominating sets in graphs. Information processing letters, 1991, 39(5),

237-240. https://doi.org/10.1016/0020-0190(91)90021-9

	Introduction
	Materials and Methods
	Stage 1: Algorithm_Basic
	Stage 2: The purification procedure for Algorithm_Basic

	Results and Discussion
	References

