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Abstract: System identification is often limited to parameter identification, while model un-1

certainties are disregarded or accounted for by a fictitious process noise. However, modelling2

assumptions may have a large impact on system identification. For this reason, we propose to use3

an Unscented Kalman Filter (UKF) empowered with online Bayesian model evidence computation4

for the sake of system identification and model selection. This approach employs more than one5

model to track the state of the system and associates to each model a plausibility measure, updated6

whenever new measurements are available. The filter outcomes obtained for different models7

are then compared and a quantitative confidence value is associated to each of them. Only the8

system identification outcomes related to the model with the highest plausibility are considered.9

While the coupling of Extended Kalman Filters (EKFs) and Bayesian model evidence was already10

addressed, we modified the approach to exploit the most striking features of the UKF, namely the11

ease of implementation and the higher-order accuracy in the description of the evolution of the12

state mean and variance. A challenging identification problem related to structural dynamics is13

discussed to show the effectiveness of the proposed methodology.14

Keywords: System identification; unscented Kalman filter; model evidence calculation; model15

class selection; structural dynamics.16

1. Introduction17

Kalman Filters (KFs) are well known tools for system identification. They work by18

applying a predictor phase, in which a suitable model is needed to predict the evolution19

of a dynamic system, and a correction phase, in which corrections to the prediction are20

applied by recursively processing system measurements [1].21

In civil and mechanical engineering, different model classes, consisting of different22

parametrizations of the structure to be identified, can be formulated. They are built23

upon different levels of complexity in the description of the system mechanics, and24

uncertainty in the formulation of the modelling assumptions. Emphasis is usually25

placed on improving the quality of the parameter estimate, especially whenever non26

linear dynamic systems are handled. With this goal, KF extensions such as the Extended27

Kalman Filter (EKF) or the Unscented Kalman Filter (UKF) have been introduced. On the28

contrary, model uncertainties are often disregarded or accounted for by a fictious process29

noise. In this work, we propose a way to tackle this aspect by calculating a quantitative30

estimate, referred to as model evidence, measuring how much the model employed31

by the KF is plausible with respect to other possible parametrizations. While a similar32

estimate was discussed in [2] for the EKF, here we develop a model evidence formula33
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suited for the UKF to exploit its ease of implementation and higher-order accuracy in34

the description of the evolution of the state mean and variance.35

The reminder of the contribution is organized as follows. In Sec. 2, first the36

governing equations of a mechanical elasto-dynamic system are discussed; second,37

the related algorithm showing the application of the UKF for parameter estimation is38

reported; finally, the equations allowing for recursive model evidence calculation are39

presented. In Sec. 3, a case study featuring a shear building excited by a real ground40

acceleration is discussed, showing how parameter identification outcomes are affected41

by different structural parametrizations and how model evidence can be used for the42

sake of model selection a posteriori. Conclusions are finally discussed in Sec. 4.43

2. Methodology44

2.1. Elasto-dynamic problem45

We focus on situations where the system dynamics is described by the Finite46

Element (FE) discretised version of a general elasto-dynamic problem. At time tk+1, it47

reads:48

Mq̈k+1 + Cq̇k+1 + Kqk+1 = fk+1, k = 0, . . . , nt−1 (1)

M, C, K are the mass, damping and stiffness matrices, respectively; q, q̇, q̈ ∈ Rn×1
49

are the nodal displacements, velocities, accelerations; fk+1 ∈ Rn×1 is the external force50

vector, assumed to be known.51

Eq. (1) is integrated in time by using the α-method [3], ruled by the parameters αm,
α f , β. At each time step, the displacement field qk+1 is obtained by solving

K∗k+1qk+1 = f∗k+1(qk, q̇k, q̈k). (2)

The modified matrix K∗ and the right hand side vector f∗k+1 are computed as52

K∗k+1 =
1− αm

β∆t2 M +
γ
(

1− α f

)
β∆t

C +
(

1− α f

)
K, (3)

f∗k+1(qk, q̇k, q̈k) = fk+1−α f
+

(
1− αm

β∆t2 (qk + ∆tq̇k) +
1 + αm − 2β

2β
q̈k

)
M+γ

(
1− α f

)
β∆t

qk −
β− γ

(
1− α f

)
β

q̇k −
(

1− γ

2β

)(
1− α f

)
∆tq̈k

C− α f K,
(4)

where ∆t = tk+1 − tk, tk+1−α f
=
(

1− α f

)
tk+1 + α f tk, fk+1−α f

= f
(

tk+1−α f

)
.53

Moreover, the mechanical system is assumed to be only partially observed. Accord-54

ingly, a boolean matrix H ∈ Rno×3n establishes the connection between the no observed55

quantities ŷk+1 ∈ Rno and the kinematic fields, as follows:56

ŷk+1 = H[qk+1, q̇k+1, q̈k+1]
T . (5)

2.2. Unscented Kalman Filter for parameter estimation57

The goal of filtering is to estimate the unknown parameters θ ∈ Rnp×1 ruling
the mechanical response of the structure to be identified, where typically C = C(θ)
and K = K(θ). In [1,4], Kalman filtering techniques were successfully applied, even
in presence of non-linearities due to damage evolution in the observed system, by
solving a dual estimation problem, and thereby adopting as state variables the model
displacements and the unknown parameters governing the response of the mechanical
domain. However, treating FE solutions characterized by a large number n of degrees of
freedom (dofs) may result in an excessive computational burden when dealing with dual
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estimation. A possible solution constists of obtaining a Reduced Order Model (ROM)
representation of the mechanical domain and from adopting as state variables, instead
of the nodal kinematics, the ROM dofs [5,6]. This strategy has been explored in [7]. Here,
we consider just θ as state variable to avoid the computational burden connected to
the combined use of the UKF and dofs tracking when large FE models are addressed,
despite the good performance usually guaranteed by state tracking [1,8]. The following
state-space representation is used

θk+1 = θk + wk (6a)

yk+1 = ŷk+1 + vk+1 (6b)

where the θ is driven by a random walk ruled by wk ∈ Rnp×1, modelled as a white58

process noise wk ∼ N (0, Q), and the FE predicted output ŷk+1 is related to the actual59

response of the structure by adding a measurement noise vk+1 ∈ Rny×1, modelled as60

white vk+1 ∼ N (0, R). The matrices Q and R are symmetric and positive defined. The61

time variation of θ, introduced by the random walk formulation, is fictitious.62

KFs attempts to propagate the mean and the covariance of the state variable vector63

through the state-space and the measurement update equations. Instead of propagating64

the probability density functions associated to the state variables, it is indeed preferable65

to deterministically propagate a vector, and to compute the state variable mean and66

covariance in a second time, especially when the state-space and the measurement67

update equations are non linear. The UKF is based on this idea. The propagated vector68

collects a set of Sigma Points (SPs) ϑi
k, i = 1, . . . , (2nθ + 1), distributed such that the69

mean and covariance of these points match those of the state variables. A scaled version70

of the UKF is used by setting the parameters αSP, κSP and βSP, as detailed in [9], to71

avoid sampling non-local effects that would spoil the state variable mean and covariance72

reconstruction [10]. In the predictor phase, this vector is propagated from the k-th to73

the k + 1-th time step through the state-space equations. In the corrector phase, the74

estimated output covariance P̂yy
k+1|k and the estimated cross covariance P̂θy

k+1|k are used75

to compute the Kalman gain Gk+1 needed to correct the propagated mean θ̂k+1|k and76

covariance P̂θθ
k+1|k on the basis of the collected measurements yk+1. The full expression77

of these quantities and the application of the UKF are detailed in Algorithm 1, adapted78

from [11].79

2.3. Model evidence computation for Unscented Kalman Filter80

System identification is usually limited to select a particular parametric modelM81

of the underlying structural system, estimating the corresponding unknown parameters82

θ. However, the use of either excessively simplified or too complex models may have a83

detrimental effect on the possibility to track the system state: oversimplified models may84

underestimate the effect of a physical process taking place; on the other hand, complex85

models may lead to good data fitting although possibly yielding to poor predictions.86

In the latter case, the model overfits the incoming data. In [2], an online model class87

selection strategy was proposed in the framework of EKFs parameter estimates. Here,88

a similar approach has been adopted for simultaneous parametric estimate and model89

class selection exploiting the UKF. Adopting a number nm of possible model classes, the90

model evidence (or plausibility) consisting of the probability p(Mm
k+1) ∈ (0, 1) has been91

computed for each model classMm, with m = 1, . . . , nm at each time step tk+1. The sum92

of the nm model evidences is equal to the unity. To derive the expression of p(Mm
k+1),93

first the Bayes theorem has been used, giving94

p
(
Mm

k+1
)
=

p
(
yk+1|Mm

k
)

p
(
Mm

k
)

nm
∑

l=1
p
(
yk+1|Ml

k
)

p
(
Ml

k
) , (7)
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where p
(
yk+1|Mm

k
)
, called conditional evidence, represents the contribution of the95

measurement at tk+1 to the plausibility of the m-th model class.96

Second, we have extended the procedure explained in [2] from the EKF to the UKF.
As a result, at the end of the corrector phase (after step 15 of Algorithm 1), the following
expression for the conditional evidence applies

p
(
yk+1|θ̂,Mm

k
)
≈ (2π)−

no
2

[
det
(

P̂θθ
k+1|k+1

(
P̂θθ

k+1|k

)−1
)] 1

2 [
det
(

P̂yy
k+1|k

−1
)] 1

2

×exp
[
− 1

2

(
θ̂k+1|k+1 − θ̂k+1|k

)T(
P̂θθ

k+1|k

)−1(
θ̂k+1|k+1 − θ̂k+1|k

)
−1

2

(
y1:k+1 − ŷ1:k+1|k

)T(
P̂yy

k+1|k

)−1(
y1:k+1 − ŷ1:k+1|k

)]
,

(8)

where det(·) calculates the determinant of the input matrix. The reported expression97

approximates p
(
yk+1|θ̂,Mm

k
)

due to the use of the Laplace’s asymptotic expansion [2].98

Algorithm 1 UKF for parameter estimation, linear elastic case.
1: for k = 0, . . . , nt . loop over the time steps

Predictor phase

2: Assume θ̂k+1|k = θ̂k|k, according to Eq. 6a . prior estimate of the state variables

3: Assume P̂θθ
k+1|k = P̂θθ

k|k + Q . prior covariance of the state variable estimate

4: Generate ϑi
k+1, i = 1, . . . , (2nθ + 1) using θ̂k+1|k, P̂θθ

k+1|k as in [9] . SPs

5: Compute qi
k+1 =

(
K∗ik+1

(
ϑi

k+1

))−1
fi

k+1

(
qk, q̇k, q̈k, ϑi

k+1

)
. displacement field for

each SP
6: Compute q̇i

k+1, q̈i
k+1 . velocity and acceleration fields for each SP

7: Compute yi
k+1 = H

[
qi

k+1, q̇i
k+1, q̈i

k+1

]T
. system observation for each SP

8: Compute ŷk+1|k = ∑2nθ+1
i=1 wi

my
i
k+1 . predicted output

Corrector phase

9: Compute P̂yy
k+1|k = ∑2nθ+1

i=1 wi
c

[
yi

k+1 − ŷk+1|k

][
yi

k+1 − ŷk+1|k

]T
+ R . estimated

output covariance

10: Compute P̂θy
k+1|k = ∑2nθ+1

i=1 wi
c

[
ϑi

k+1 − θ̂k+1|k

][
yi

1:k+1 − ŷ1:k+1|k

]T
. estimated cross

covariance
11: Compute Gk+1 = P̂θy

k+1|k

(
P̂yy

k+1|k

)−1
. Kalman gain

12: Update the prior estimate θ̂k+1|k+1 = θ̂k+1|k + Gk+1

(
yk+1 − ŷk+1|k

)
. posterior

estimate of the state variables
13: Update the prior estimate P̂θθ

k+1|k+1 = P̂θθ
k+1|k −Gk+1P̂yy

k+1|kGT
k+1 . posterior

covariance of the state variable estimate
14: Compute qk+1 =

(
K∗k+1

(
θ̂k+1|k+1

))−1
rhsk+1

(
qk, q̇k, q̈k, θ̂k+1|k+1

)
. displacement

field
15: Compute q̇k+1, q̈k+1 . velocity and acceleration fields
16: end for

3. Results and Discussion99

As a numerical case study, we have studied how to determine the interstory stiffness100

and damping of the two dof shear building model (n = 2) reported in Fig. 1. The101
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mechanical properties of the building have been adimensionalized to ease the UKF102

tuning by setting the matrices in Eq. (1) equal to103

M =

[
2 0
0 2

]
, C =

[
0.2 −0.1
−0.1 0.1

]
, K =

[
2 −1
−1 1

]
.

The building has been excited by the ground acceleration a0 reported in Fig. 2,104

lasting 60 s. The response of the building has been monitored by recording the floor105

acceleration y = [y1, y2]
T with a sampling frequency of 50 Hz, for a total of nt = 3000106

samples. A white noise, featuring a standard deviation of 5 · 10−3, has been added107

to y1 and to y2 to mimic the signal perturbation affecting micro-electro mechanical108

accelerometers [12].109

Figure 1. Two dofs shear model. Accel-
eration monitoring.
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phase (after step 15 of Algorithm 1), the following expression for the conditional evidence
applies

p
(
yk+1|θ̂,Mm

k
)
≈ (2π)−

no
2

[
det
(

P̂θθ
k+1|k+1

(
P̂θθ

k+1|k

)−1
)] 1

2 [
det
(

P̂yy
k+1|k

−1
)] 1

2

×exp
[
− 1

2

(
θ̂k+1|k+1 − θ̂k+1|k

)T(
P̂θθ

k+1|k

)−1(
θ̂k+1|k+1 − θ̂k+1|k

)
−1

2

(
y1:k+1 − ŷ1:k+1|k

)T(
P̂yy

k+1|k

)−1(
y1:k+1 − ŷ1:k+1|k

)]
,

(14)

where det(·) calculates the determinant of the input matrix. The whole derivation process
of p

(
yk+1|θ̂,Mm

k
)

will be reported elsewhere.

3. Results and Discussion

We propose to estimate the interstory stiffness and damping of the two dof shear
building model reported in Fig. . The mechanical properties of the building have been
adimensionalized to ease the UKF tuning, consisting in setting the SP scaling parameter
αSP, the process noise covariance Q, the measurement noise covariance R, and the initial
parameter covariance P̂θθ

0 . The building is excited by a 60 s ground acceleration,

m

m

k

k

c

c
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Figure 1. Portal frame: POD in time. Descent of the singu-
lar values σT

s normalized with respect to σT
1 .
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a 0

Figure 2. Portal frame: POD over parameters. Descent of
the singular values σ

gη
s normalised with respect to σ

gη
1 .
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Figure 2. Ground acceleration.

The acceleration recordings coming from this reference building have been used as
measurements in the corrector phase of the filtering procedure (step 9 and 10 of Algo-
rithm 1). Three model classes,M1,M2,M3, featuring different structural parametriza-
tion, have been considered, as shown in the following

C1 =

[
0.12 −0.06
−0.06 0.06

]
, K1

(
θ1

1

)
= θ1

1

[
2 −1
−1 1

]

C2
(

θ2
2

)
= θ2

2

[
0.2 −0.1
−0.1 0.1

]
, K2

(
θ2

1

)
= θ2

1

[
2 −1
−1 1

]

C3
(

θ3
3

)
= θ3

3

[
0.2 −0.1
−0.1 0.1

]
, K3

(
θ3

1 , θ3
2

)
=

[
θ3

1θ3
2 −θ3

2
−θ3

2 θ3
2

]
.

Model classM1 is governed by the parameter θ1
1 ruling the inter storey stiffness of110

both floors (for this reason, θ1
1 is factored out from K1);M2 is governed by θ2 =

[
θ2

1 , θ2
2
]T ,111

ruling, respectively, the inter storey stiffness and damping of both floors;M3 is governed112

by θ3 =
[
θ3

1 , θ3
2 , θ3

3
]T , where θ3

1 and θ3
2 rules the first and second floor inter storey stiffness,113

θ3
3 rules the damping associated to both floors. Comparing these parametrizations with114

the reference model, it is clear thatM1 is under parametrizing the mechanical system,115

not associating any parameter to the damping properties of the structures and suffering116

a model bias, being C1 = 0.6 C; M3 is over parametrizing the stiffness matrix; M2
117

is performing a correct parametrization of the structural response, and it is therefore118

expected to allow for the best estimate of the system mechanical properties. For all119

model classes, the initial guess of the relevant parameters have underestimated of 40%120

the parameter values ruling the reference structure.121

KF tuning is usually problem-dependent and is performed through a trial-and-error122

procedure. In this case, we have set the SP scaling parameters to αSP = 10−3, κSP = 0,123

βSP = 2; the measurement noise covariance to R = 4 · 10−4 I2, where I2 ∈ R2×2 is the124

identity matrix; the process noise covariance to Q = 10−8 Inp , with Inp ∈ Rnp×np ; the125
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initial parameter covariance to P̂θθ
0 = 0.25 Inp . The value of np depends on the number126

of parameters employed by each model (np = 1 forM1, np = 2 forM2, np = 3 forM3).127

In Fig. 3 the predicted output ofM1, computed according to step 8 of Algorithm128

1, is reported against the floor acceleration measurements, showing the filter capacity129

of tracking the shear building accelerations despite the presence of noise. A small130

discrepancy between the reference model and the predicted output is observable only131

magnifying the curves. The predicted output ofM2 andM3, not reported for lack of132

space, exhibit an even smaller discrepancy.133

0 20 40

-0.1

0

0.1

45 46 47 48

-0.1

0

0.1

0 20 40

-0.1

0

0.1

45 46 47 48

-0.1

0

0.1

Figure 3.M1 predicted outputs (dot dashed blue line) is reported against the noise corrupted reference model recordings (orange line).
The left figure refers to the first floor, the right figure to the second floor. Black lines depict the reference model acceleration when not
corrupted by noise.

The filter capacity of tracking the system output is expected to greatly help parame-134

ter identification. In Figs. 4-6 the time evolution of the parameters employed byM1,135

M2 andM3 are reported, respectively. Black color is used for parameters involved in136

the expression of the structural stiffness; orange color when related to the structural137

damping. The plots report both the parameter posterior estimates and the confidence138

intervals of these estimates. Looking at the confidence intervals, stiffness related param-139

eters seem to assume negative values during the first part of the analyses. This is due140

to to the initial choice of P̂θθ
0 = 0.25 Inp . However, positive values have been always141

associated with the inter-storey stiffness thank to the use of the scaled version of the142

UKF. A similar reasoning applies to damping related parameters.143

Looking at Fig. 4, the UKF has been unable to provide a correct estimate for θ1
1 ,144

despite the uncertainty reduction linked to the narrowing of the confidence interval.145

Even the stiffness related parameters θ3
1 and θ3

2 ofM2, depicted in Fig. 6, seem not able146

to converge to the desired value. On the contrary, coming toM2 , θ2
1 has been correctly147

identified with small uncertainty, as shown in Fig. 5. These results were somehow how148

expected due to the under parametrization of the mechanical system operated byM1,149

and the over parametrization of the mechanical system exhibited byM3, whileM2
150

embodies the correct description of the reference model.151

Model classM3 has been unable to provide any idea of the damping properties,152

ending up pushing θ3
3 to 0. Model classM2 has provided a better estimate, still quite153

poor, over estimating of 40% the damping related parameter θ2
2 . These difficulties have154

been due to the relevance of damping in the identification of continuously excited155

structure, discussed in [4].156

From the results reported above,M2 seems to lead to the best system identification,157

however we reached this conclusion by knowing the mechanical properties of the158

reference system. It would have been very hard, if not impossible to judge model159

plausibility just looking at the predicted outputs. Indeed, as shown in Fig. 3, the UKF160

has been able to reproduce the monitoring system outcome even whenM1 has been161

employed. For this reason, model evidence computation, whose outcome is reported in162

Fig. 7, is extremely relevant to understand which model can be trusted the most.163

At the beginning of the identification procedure, equal plausibility has been associ-164

ated to the three models. Their values have been recursively updated as soon as new165
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2

Figure 4. Model classM1, time evolution of θ1
1 . The thicker dotted line reports the posterior estimate, the thinner dotted lines the

99% confidence interval of the estimate, determined using the posterior covariance. The continuous line reports the parameter value
assumed by the reference model.
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(a) θ2
1

0 20 40 60
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(b) θ2
2

Figure 5. Model classM2, time evolution of θ2. The thicker dotted line reports the posterior estimate, the thinner dotted line the 99%
confidence interval of the estimate, determined using the posterior covariance. The continuous line reports the parameter values
assumed by the reference model.
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(a) θ3
1
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2
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3

Figure 6. Model classM3, time evolution of θ3. The thicker continuous line reports the posterior estimates, the thinner dotted lines the
99% confidence interval of the estimate, determined using the posterior covariance. The continuous line reports the parameter values
assumed by the reference model.

measurements have become available using Eqs. 7 and 8. During the first part of the166

analysis,M1 appeared to be the most plausible model class. This is in agreement with167

intuition: M1 is the easiest to tune, employing just one parameter, and the bias in the168

modelling of damping has a marginal relevance when t < 20 s due to the strong ground169

motion undergone by the structure. In a second stage, M3 resulted to be the most170

plausible model class. This was due to the good estimate of both the stiffness related171

parameters and the damping related parameter in the central part of the analysis. Finally,172

the over complexity ofM3 led to a deterioration of the parameter identification, while173

the good convergence of the stiffness related parameter and the reasonable damping174

estimate promotedM2 as most plausible model class.175
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This numerical example shows that model evidence evaluation can be successfully176

used for model selection. The reader should note that, due to the recursive nature of Eq.177

7, a certain time delay has occured between the improved identification capacity of the178

filter equipped with a certain model and the increase in plausibility of this model.179
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Figure 7. Model evidence evolution of each model.

4. Conclusions180

In this work, we have discussed an algorithm for simultaneous parameter estima-181

tion and model evidence calculation in dynamic linear elastic problems. Starting from182

the work of [2], a recursive expression for model evidence evaluation has been derived183

when the unscented Kalman filter is used. Numerical results show that model evidence184

can guide system identification in the presence of model uncertainties by associating a185

plausibility measure to different employed models featuring possible parametrization of186

the mechanical domain. Indeed, model evidence can be successfully used to select the187

most plausible structure parametrization as parameter identification is carried out.188
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