
Proceedings

A Fast Algorithm for Euclidean Bounded Single-Depot
Multiple Traveling Salesman Problem†

Víctor Pacheco-Valencia 1 , Nodari Vakhania 1* , José Alberto Hernández 2 and Juan Carlos Hernández-Gómez
3

����������
�������

Citation: Pacheco-Valencia, V;

Vakhania N., Hernández, J.A.; and

Hernández-Gómez J.C. A Fast

Algorithm for Euclidean Bounded

Single-Depot Multiple Traveling

Salesman Problem. Algorithms 2021, 1,

0. https://doi.org/

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Investigación en Ciencias UAEMor; Universidad Autónoma del Estado de Morelos, Av.
Universidad 1001, Col.Chamilpa, post code 62209, Cuernavaca, Morelos, México.

2 Facultad de Contaduría, Administración e Informática UAEMor; Universidad Autónoma del Estado de
Morelos, Av. Universidad 1001, Col.Chamilpa, post code 62209, Cuernavaca, Morelos, México.

3 Facultad de Matemáticas UAGro; Universidad Autónoma de Guerrero, Carlos E. Adame No.54, Col.Garita,
post code 39650, Acapulco, Guerrero, México.

* Correspondence: nodari@uaem.mx
† 1st International Online Conference on Algorithms (IOCA 2021), https://ioca2021.sciforum.net/, September

27 - October 10/2021.

Abstract: The Multiple Traveling Salesman Problem (MTSP) is a combinatorial optimization problem 1

that can model some real-life problems. There are given n + 1 objects that are commonly referred 2

to as cities, among which there is one distinct city called depot, and k additional objects commonly 3

referred to as salesman. Each salesman has to build its own tour that starts from the depot, ends 4

also in depot and visits only once one or more other cities. Visiting city j from city i implies a cost 5

cij. The cost of a tour is the sum of the individual costs of each pair of cities from that tour. The 6

aim is to minimize the total cost of all k tours. Here we consider the two-dimensional Euclidean 7

version of the problem and impose lower and upper bounds on the minimum and maximum number 8

of cities in a tour suggesting a 3-phase heuristic algorithm for that version. At the first phase the 9

whole set of cities is partitioned into k disjoint subsets, at the second phase a feasible tour for each of 10

these subsets is constructed, and at phase 3 these feasible tours are iteratively improved. We report 11

preliminary experimental results for the 22 benchmark instances. The approximation gap provided 12

by the proposed heuristic is comparable to the state of the art results, whereas it is much faster than 13

earlier known state-of-the-art algorithms. 14

Keywords: travelling salesman problem; algorithm; time complexity 15

1. Introduction 16

Multiple Traveling Salesman Problem (MTSP) is a generalization of a well-known Trav- 17

eling Salesman Problem (TSP) that reflects better the needs in some practical circumstances. 18

Instead of a single salesman, in MTSP there are k ≥ 1 salesmen and one distinguished point 19

called depot. An independent tour starting and ending at the depot is to be constructed for 20

each salesman, and the objective is to minimize the total incurred distance/time. 21

MTSP is a relaxation of another widely studied Capacitated Vehicle Routing Problem 22

(CVRP), also known as Capacitated MTSP (CMTSP), where each salesman drives a vehicle 23

with a limited capacity and each client has some demand so that the sum of the demands 24

of the clients from a tour can not exceed the capacity of the vehicle that is assigned to that 25

tour (a vehicle has a limited fuel/energy capacity). 26

The MTSP problem can be described as follows. We are given an undirected weighted 27

complete graph G = (V, E) with n2 − n edges such that the set V of n + 1 vertices contains 28

one distinguished vertex d = n + 1 called depot and a non-negative weight w(i, j) is 29

associated with each edge (i, j) ∈ E. Each of the n vertices from set V \ {d} represents 30

one of the n clients, and weight w(i, j) sets the time/distance between vertices i and j. 31

Algorithms 2021, 1, 0. https://doi.org/10.3390/a1010000 https://www.mdpi.com/journal/algorithms

https://ioca2021.sciforum.net/
https://www.mdpi.com
https://orcid.org/0000-0001-8834-4710
https://orcid.org/0000-0002-9013-9334
https://orcid.org/0000-0002-5184-0005
https://orcid.org/0000-0003-1429-3644
https://www.mdpi.com/article/10.3390/a1010000?type=check_update&version=1
https://doi.org/10.3390/a1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://ioca2021.sciforum.net/
https://doi.org/10.3390/a1010000
https://www.mdpi.com/journal/algorithms

Algorithms 2021, 1, 0 2 of 8

An integer k represents the number of different feasible tours in a solution, a sequence of 32

vertices which starts and ends at the depot and contains at least one more vertex exactly 33

once (so that the salesman visits every vertex from the tour only once except the depot 34

which it visits twice). A feasible solution is a union of exactly k feasible tours. 35

Given a feasible tour T j of salesman j 36

T j = (d, ij
1, ij

2, · · · , ij
mj−1, ij

mj , d), (1)

the cost of that tour is 37

C(T j) = w(d, ij
1) + w(ij

1, ij
2) + · · ·+ w(ij

mj−1, ij
mj) + w(ij

mj , d). (2)

The cost a feasible solution T = {T1, T2, · · · , Tk} is 38

C(T) = C(T1) + C(T2) + · · ·+ C(Tk). (3)

The objective is to find an optimal solution, a feasible solution with the minimum cost, 39

minT C(T). 40

In practical terms, it is clear that an optimal solution provides higher profits for an 41

involved company and also a higher customer satisfaction. Besides, the vehicles and 42

machines involved in the customer service process have less wear and tear causing less 43

contamination. 44

Bektas[1] in 2006 described some variants for an MTSP with more than one depot, 45

with an upper limit on the number of clients in a tour and a permissible time window 46

for the salesman to visit each client on its tour. In some settings, the number of salesmen 47

is not fixed in advanced, the minimal number of salesmen is 1 and there is a penalty for 48

introducing each new salesmen in the solution. Bektas[1] and, Kara & Bektas[2] present 49

alternative integer programming formulations for MTSP. More recently, Cheikhrouhou & 50

Khoufi [3] presented another survey focusing on some related real-life problems including 51

Unmanned Aerial Vehicle problems. 52

In this paper, we focus on a version of MTSP known as Bounded Single-Depot Multiple 53

Traveling Salesman Problem (Bounded SD-MTSP) which is an extension of MTSP with a 54

restriction on the number of clients in each tour, which is allowed to be any magnitude 55

from a priory given range [mmin, mmax]. We propose a three-phase deterministic solution 56

method that we call PCI-algorithm (Partition, Construction and Improvement algorithm). 57

PCI-algorithm uses some ideas from [4] and [5] and is designed to construct a feasible 58

solution quickly and then improve it. The algorithm from [4] for problem MTSP works in 59

two basic phases, at phase 1 the whole set of vertices is partitioned into k disjoint subsets 60

based on the girding polygon and specially formed auxiliary separator edges. At phase 2, 61

a feasible tour for each subset from the formed partition is constructed. The algorithm for 62

TSP from [5] has three phases. At phase 1 an (infeasible) partial tour based on the girding 63

polygon from [4] is constructed. At phase 2 the insertion of yet undistributed vertices are 64

carried out until a feasible solution is obtained. At phase 3 current feasible solution is 65

improved iteratively by altering the current position of some vertices from the solution. At 66

it was shown experimentally, this algorithm consumes a little computer memory and is 67

considerably faster than other state-of-the-art algorithms. 68

As in [4], PCI-algorithm initially partitions the set of vertices in k disjoint subsets at 69

phase 1. Then at phase 2 it constructs the initial k tours using the algorithm from [5] for the 70

traveling salesman problem. The feasible solution of phase 2 is further improved at phase 71

3: iteratively, a vertex from a tour is moved from its current position to another specially 72

determined position within the same or another tour so that the resultant solution remains 73

feasible. The destiny vertex and its new position are selected so that the accomplished 74

rearrangement provides the maximum decrease of the current cost. 75

Algorithms 2021, 1, 0 3 of 8

We report preliminary experimental results for the 22 benchmark instances. The 76

approximation gap provided by the proposed heuristic is comparable to the state of the art 77

results, whereas it is much faster than earlier known state-of-the-art algorithms. 78

2. Methods 79

From here on we concentrate our attention to the bounded version of MTSP (BMTSP) 80

in which the given lower and upper bounds restrict the number of vertices in a tour. 81

This section describes our first heuristic algorithm for the bounded version BMTSP 82

of the problem with k salesmen. It consists of three phases. At phase 1 a partition of 83

set V \ {d} into k (disjoint) subsets is carried out. This reduces the problem into k sub- 84

problems, each of which can be seen as an instance of TSP. At phase 2, for each of the 85

partitions (sub-problems) the heuristic from [5] is applied to construct a feasible tour. This 86

results in a feasible solution for the problem BMTSP. At phase 3, an improvement of the 87

solution of phase 2 is carried out. 88

2.1. Phase 1 89

We describe now phase 1 specifying how the partition of set V \ {d} in k sub- 90

sets V1, V2, · · · , Vk is performed (each of them having the cardinality within the range 91

[mmin, mmax]). Phase 1 consists of the initial assignments, stage 1 and stage 2. Below we 92

describe how initial assignments are performed. 93

Recall that we consider the Euclidean version of the problem, and hence we deal 94

with the 2-dimensional Euclidean plane. We first define an auxiliary point c on that plane, 95

that we call the centroid. The x and y coordinates xc and yc of this point are obtained by 96

averaging the x and the y coordinates of the n vertices from V \ {d}, i.e., xc =
∑n

i=1 xi
n and 97

yc =
∑n

i=1 yi
n . 98

Let i′1 ∈ V \ {d} be any furthest vertex from depot d. We determine k− 1 additional 99

auxiliary points i′j, j = 2, . . . , k so that each of these points are at the same distance from cen- 100

troid c and the lines from point c to each of i′j divide the plane into k symmetric areas, i.e., the 101

angle between each two neighboring lines is 2π/k. Procedure COORDINATES(c, i′1, j, k) 102

below specifies how the coordinates xi′j
and yi′j

of each point i′j are calculated. 103

Procedure 1: COORDINATES(c, i′1, j, k)

1 θ := arctan
(yi′1

−yc

xi′1
−xc

)
2 if θ + (j− 1) 2π

k < π then
3 xi′j

:= xc + w(c, i′1) cos
(
θ + (j− 1) 2π

k
)

4 yi′j
:= yc + w(c, i′1) sin

(
θ + (j− 1) 2π

k
)

5 else
6 j′ := 1
7 while θ + (j′ − 1) 2π

k < π do
8 j′ := j′ + 1

9 xi′j
:= xc + w(c, i′1) cos

(
θ − (j− j′ + 1) 2π

k
)

10 yi′j
:= yc + w(c, i′1) sin

(
θ − (j− j′ + 1) 2π

k
)

11 return i′j

The two stages of Phase 1 use another auxiliary procedure CLOSEST(B, A, out). 104

Roughly, set A consists of the vertices from subset Vi, one of the subsets from the current 105

partially formed partition V1, · · · , Vk. Set B consists of the vertices which are not assigned 106

to any of the partially formed tour, i.e., B = V \ {∪j{Vj} ∪ {d}}. CLOSEST(B, A, out) out- 107

puts a vertex b ∈ B that is closest to a vertex from set A, if the parameter out = “vertex”; if 108

out = “distance”, then the procedure returns the distance between the closest two vertices 109

of sets A and B. 110

Algorithms 2021, 1, 0 4 of 8

Procedure 2: CLOSEST(B, A, out)
input : A = {a1, a2, · · · , a|A|} B = {b1, b2, · · · , b|B|}

1 b := 0
2 d := ∞
3 for i := 1 to |B| do
4 for j := 1 to |A| do
5 if

√
(xaj − xbi)

2 + (yaj − ybi)
2 < d then

6 b := bi

7 d :=
√
(xaj − xbi)

2 + (yaj − ybi)
2

8 if out = “vertex” then
9 return b // return the vertex

10 if out = “distance” then
11 return d // return the distance

Now, stage 1, initially sets Vj := ∅ and B := V \ {d}. Iteratively, invoking procedure 111

CLOSEST(B, Vj, “vertex”) mmin times every subset Vj is augmented at each iteration with 112

a new vertex by Vj := Vj ∪CLOSEST(B, Vj, “vertex”), where that vertex is eliminated from 113

the current set B. As a result, we are left with the feasible subsets Vj, i.e., ones with exactly 114

mmin vertices. 115

If the above formed feasible partition V1, · · · , Vk is not complete, i.e., it does not contain 116

all the vertices from set V \ {d} and hence the corresponding solution is not feasible, then 117

phase 1 enters the second stage which augments the cardinality of some of the subsets 118

and creates the complete feasible partition, that is again denoted by V1, · · · , Vk. Iteratively, 119

procedure CLOSEST(B, Vj, “vertex”) is invoked for each subset Vι with |Vι| < mmax and 120

a vertex with the shortest distance from the corresponding subset is added to the former 121

subset Vι. In other words, Vj := Vj ∪ CLOSEST(B, Vj, “vertex”), where the distance of the 122

vertex CLOSEST(B, Vj, “distance”) to the closest vertex of set Vj is the minimum possible 123

among all subsets Vι with |Vι| < mmax (again, set B is updated as in stage 1). Phase 1 halts 124

with a complete feasible partition, again denoted by V1, · · · , Vk. 125

2.2. Phase 2 126

At phase 2 a feasible tour for each of the subsets Vj ∪ {d} of phase 1 is constructed by 127

merely invoking the algorithm CII from [5]. 128

2.3. Phase 3 129

Phase 3 applies local rearrangement to the solution of phase 2 to improve that solution. 130

It invokes procedure 4 that repeatedly selects a vertex from tour T j and alters its position 131

within that tour or this vertex is relocated to another tour T j′ . The exchange is accomplished 132

if it yields the decrease of the total cost; among all such exchanges, one which yields the 133

maximum decrease is accomplished so that the resultant solution remains feasible. 134

For the convenience of the presentation, at phase 3, we represent a feasible tour T j as 135

T j = (ij
0, ij

1, · · · , ij
mj , ij

mj+1), where ij
0 = ij

mj+1 = d. Phase 3 repeatedly invokes procedure 136

4, RELOCATE(T1, · · · , Tk) that relocates a selected vertex from one tour to another. For 137

each vertex ij
l ∈ T j, j = 1 . . . , k, the gain after removing that vertex from tour T j is 138

G(ij
l) = w(ij

l−1, ij
l+1)−w(ij

l−1, ij
l)−w(ij

l , ij
l+1), here j ∈ [1, k] and l ∈ [1, mj+1] (note that by 139

the triangle inequality, G(ij
l) ≤ 0). Likewise, the cost of the insertion of vertex ij

l in between 140

vertices ij′

l′−1 and ij′

l′ in tour T j′ is C(ij
l , j′, l′) := −w(ij′

l′−1, ij′

l′) + w(ij′

l′−1, ij
l) + w(ij

l , ij′

l′) (here 141

j′ ∈ [1, k] and l′ ∈ [1, mj′+1], note that j = j′ is possible). All possible exchanges are verified 142

and an exchange that yields the minimum G(ij
l) + C(ij

l , j′, l′) is carried out, given that 143

G(ij
l) + C(ij

l , j′, l′) < 0. This kind of an exchange is iteratively performed at phase 3 until 144

Algorithms 2021, 1, 0 5 of 8

Procedure 3: PHASE−1(i′1, c, V, k, mmin, mmax)
1 for j := 1 to k do
2 Vj := ∅

3 B := V \ {d} // vertices not included in any subset Vj
// Stage 1:

4 V1 := V1 ∪ CLOSEST(B, {i′1}, “vertex”) // Add the first vertex to each subset Vj
5 for j := 2 to k do
6 i′j := COORDINATES(c, i′1, j, k)
7 b := CLOSEST(B, {i′j}, “vertex”)
8 Vj := Vj ∪ {b} // b ∈ B
9 B := B \ {b}

// Add mmin − 1 vertex to each subset Vj
10 for m := 2 to mmin do
11 for j := 1 to k do
12 b := CLOSEST(B, Vj, “vertex”)
13 Vj := Vj ∪ {b}
14 B := B \ {b}

// Stage 2: If the above formed feasible partition is not complete
15 while |B| > 0 do
16 d′ := ∞
17 for j := 1 to k do
18 if |Vj| < mmax then
19 d := CLOSEST(B, Vj, “distance”)

20 if d < d′ then
21 d′ := d
22 b′ := CLOSEST(B, Vj, “vertex”)
23 j′ := j

24 Vj′ := Vj′ ∪ {b′}
25 B := B \ {b′}
26 return V1, · · · , Vk

Algorithms 2021, 1, 0 6 of 8

the latter sum remains negative. Phase 3 halts with the solution of the previous iteration 145

when the minimum G(ij
l) + C(ij

l , j′, l′) becomes non-negative. 146

Procedure 4: RELOCATE(T1, · · · , Tk)

input : T j = {ij
0, ij

1, · · · , ij
mj , ij

mj+1} where ij
0 = ij

mj+1 = d

1 G′ := ∞
2 for j := 1 to k do
3 if mj > mmin then
4 for l := 1 to mj + 1 do
5 G := w(ij

l−1, ij
l+1)− w(ij

l−1, ij
l)− w(ij

l , ij
l+1) // The gain after removing ij

l from T j

6 for j′ := 1 to k do
7 if mj′ < mmax then
8 for l′ := 1 to mj′ + 1 do

9 if cj′

i′−1 6= cj
i ∧ cj′

i′ 6= cj
i then

10 C := −w(ij′

l′−1, ij′

l′) + w(ij′

l′−1, ij
l) + w(ij

l , ij′

l′)

// The cost of the insertion of vertex ij
l between ij′

l′−1 and

ij′

l′ in tour T j′

11 else
12 C := ∞

13 if G + C < G′ then
14 p := ij

l

15 q := ij′

l′

16 G′ := G + C

17 return G′, p, q

Procedure 5: PHASE−3(T1, · · · , Tk)
1 stop := f alse
2 while stop = f alse do
3 G′, ij

l , ij′

l′ := RELOCATE(T1, · · · , Tk)

4 if G′ < 0 then
5 i := ij

l
6 remove vertex i from the tour T j

7 insert vertex i between vertices ij′

l′−1 and ij′

l′ in tour T j′

8 else
9 stop := true

10 return T1, · · · , Tk

3. Implementation and Results 147

PCI-algorithm was coded in C++ and compiled on a server with processor 2x Intel 148

Xeon E5-2650 0 @ 2.8 GHz, with 32 GB in RAM and Debian GNU/Linux 10 (buster) 149

operating system. 150

To evaluate the performance of our algorithm, we used the instances proposed by 151

Junjie & Dingwei[7] in 2006, who chose six TSP instances from TSPLIB[15] (pr76, pr152, 152

pr226, pr299, pr439 and pr1002), and Necula et al.[8] in 2015, who chose other 4 TSP instances 153

from TSPLIB[15] (eil51, berlin52, eil76 and rat99). These instances were transformed into 22 154

BMTSP instances for by setting the corresponding first vertices as the depot and the rest of 155

the vertices as the n clients. A positive integer was chosen for k (the number of salesmen) 156

and the minimum and the maximum number of clients is each a tour. 157

The main results are shown in table 1. These tables specify the time and the cost of 158

the solutions obtained by PCI-algorithm and the Best Known Solutions (BKS) for the 6 159

Algorithms 2021, 1, 0 7 of 8

instances from [7,9–14]. We also report our results for the 16 instances from [8] where the 160

results are estimated based on the solutions provided by CPLEX [17]. 161

Table 1. Comparison of the Best Know Solutions (BKS) and PCI-algorithm.

Instance PCI-algorithm Algorithm

Name n k mmin mmax C(PCI) ErrorPCI TimePCI C(BKS) TimeBKS Name

pr76.tsp 75 5 1 20 173,820 31% 63 ms. 132,784 5 s. GELS-GA[10]
pr152.tsp 151 5 1 40 135,835 29% 246 ms. 105,205 8 s. GELS-GA[10]
pr226.tsp 225 5 1 50 156,015 5% 222 ms. 148,051 76.6 s. GAL[11]

pr299.tsp 298 5 1 70 75,064 3% 816 ms. 72,949 108 s. GAL[11]
pr439.tsp 438 5 1 100 147,308 2% 2 s. 143,785 269.5 s. GAL[11]
pr1002.tsp 1001 5 1 220 329,128 -2% 22 s. 334,351 1524 s. GAL[11]

eil51.tsp 50 2 23 27 469 6% 29 ms. 442.32 CPLEX[8]
eil51.tsp 50 3 15 20 492 6% 14 ms. 464.11 CPLEX[8]
eil51.tsp 50 5 7 12 547 3% 23 ms. 529.70 CPLEX[8]
eil51.tsp 50 7 5 10 619 2% 16 ms. 605.21 CPLEX[8]

berlin52.tsp 51 2 10 41 8,283 7% 46 ms. 7,753.89 CPLEX[8]
berlin52.tsp 51 3 10 27 8,407 4% 81 ms. 8,106.85 CPLEX[8]
berlin52.tsp 51 5 6 17 9,577 5% 21 ms. 9,126.33 CPLEX[8]
berlin52.tsp 51 7 4 17 11,490 16% 72 ms. 9,870.02 CPLEX[8]

eil76.tsp 75 2 36 52 586 5% 23 ms. 558.59 CPLEX[8]
eil76.tsp 75 3 21 36 612 6% 51 ms. 579.30 CPLEX[8]
eil76.tsp 75 5 12 30 724 6% 27 ms. 680.67 CPLEX[8]
eil76.tsp 75 7 9 22 788 4% 37 ms. 759.90 CPLEX[8]

rat99.tsp 98 2 46 52 1,478 9% 52 ms. 1,350.73 CPLEX[8]
rat99.tsp 98 3 27 36 1,647 8% 51 ms. 1,519.49 CPLEX[8]
rat99.tsp 98 5 13 30 1,911 3% 122 ms. 1,855.83 CPLEX[8]
rat99.tsp 98 7 9 22 2,336 2% 126 ms. 2,291.82 CPLEX[8]

The table header contains 3 main columns: The name of an instance, the number of 162

clients (n), the number of salesmen (k), and the upper and lower limits (mmin and mmax). 163

Column PCI-algorithm shows the cost of the solutions obtained by our algorithm (C(PCI)), 164

parameter (ErrorPCI) specifies the approximation gap ErrorPCI =
(

C(BKS)−C(PCI)
C(BKS)

)
100% 165

of algorithm PCI compared to the cost of the Best Known Solutions (C(BKS)). Columns 166

(TimePCI) and cost (C(BKS)) specify the time and the cost, respectively, delivered by 167

our algorithm. Column (TimeBKS) specifies time required by the algorithm with the Best 168

Known Solution for a corresponding instance. 169

As it can be seen, PCI-algorithm obtained a lower cost solution for instance pr1002.tsp, 170

and 16 instances with an approximation gap less than or equal to 7%. The execution time of 171

PCI-algorithm is considerably lower than that of the state-of-the-art algorithms, in average, 172

our algorithm is 132 times faster than two best-known state-of-the art algorithms [7,9–14] 173

Hence, we hope that our algorithm has a potential to solve larger-sized instances. 174

4. Conclusions and Future Work 175

The proposed PCI-algorithm for the Bounded Single-Depot MTSP has obtained a best 176

currently available solution for one of the publicly available benchmark instances and it 177

provides an approximation gap not larger than 7% for 16 benchmark instances. Not less 178

importantly, PCI-algorithm is too fast compared to the existing algorithms in the literature. 179

This gives us a hope that it can give solutions for very large-scale instances. 180

Apparently, the partition phase 1 gives a good initial clustering of the set of vertices by 181

making reasonable selection of vertices for each of the k subsets. At phase 2, the algorithm 182

for TSP generates already good solutions which are further essentially improved at phase 183

3. 184

For future work, we plan to continue to develop the algorithm using new alternative 185

procedures mainly at phase 3. We also plan to generate new benchmark instances for the 186

Bounded Single-Depot MTSP. We also plan to convert TSPLIB benchmark [15] instances to 187

the Bounded Single-Depot MTSP instances. 188

Algorithms 2021, 1, 0 8 of 8

Author Contributions: Conceptualization, N.V.; Methodology, V.P-V.; Software and data recollection 189

J.A.H.; Validation, N.V.; Formal Analysis, N.V.; Investigation, V.P-V.-N.V; Resources administrated by 190

J.A.H.; Writing—original draft preparation, V.P-V; Writing—review and editing, N.V.; Visualization, 191

V.P-V and N.V.; Supervision, N.V.; Project administration, N.V.; All authors have read and agreed to 192

the published version of the manuscript 193

Funding: This research received no external funding. 194

Institutional Review Board Statement: Not applicable. 195

Informed Consent Statement: Not applicable. 196

Conflicts of Interest: The authors declare no conflict of interest. 197

References
1. Bektas, T. The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 2006, 34(3),

209-219.
2. Kara, I.; & Bektas, T. Integer linear programming formulations of multiple salesman problems and its variations. European Journal

of Operational Research, 2006, 174(3), 1449-1458.
3. Cheikhrouhou, O. & Khoufi, I. A comprehensive survey on the Multiple Traveling Salesman Problem: Applications, approaches

and taxonomy. In Computer Science Review 2021, 40, 100369.
4. Vakhania, N.; Hernandez, J.A.; Alonso-Pecina, F.; Zavala, C. A Simple Heuristic for Basic Vehicle Routing Problem. J. Comput. Sci.

2016, 3, 39.
5. Pacheco-Valencia, V.; Hernández, J. A.; Sigarreta, J. M.; Vakhania, N. Simple Constructive, Insertion, and Improvement Heuristics

Based on the Girding Polygon for the Euclidean Traveling Salesman Problem. Algorithms 2020, 13(1), 5.
6. Jünger, M.; Reinelt, G.; Rinaldi, G. The traveling salesman problem. In Handbooks in Operations Research and Management Science;

Elsevier Science B.V.; Sara Burgerhartstraat 25; P.O. Box 211, 1000 AE Amsterdam, The Netherlands, 1995, Volume 7, pp. 225–330.
7. Junjie, P. & Dingwei, W. (2006, August). An ant colony optimization algorithm for multiple travelling salesman problem. In First

International Conference on Innovative Computing, Information and Control 2006 Volume I (ICICIC’06) (Vol. 1, pp. 210-213). IEEE.
8. Necula, R.; Breaban, M.; & Raschip, M. Performance evaluation of ant colony systems for the single-depot multiple traveling

salesman problem. In International Conference on Hybrid Artificial Intelligence Systems. Springer, Cham. 2015, (pp. 257-268).
9. Harrath, Y.; Salman, A. F.; Alqaddoumi, A.; Hasan, H.; & Radhi, A. A novel hybrid approach for solving the multiple traveling

salesmen problem. In Arab Journal of Basic and applied sciences 2019, 26(1), 103-112.
10. Hosseinabadi, A. A.; Kardgar, M.; Shojafar, M.; Shamshirband, S.; & Abraham, A. GELS-GA: hybrid metaheuristic algorithm for

solving multiple travelling salesman problem. In 2014 14th International Conference on Intelligent Systems Design and Applications,
2014, (pp. 76-81). IEEE.

11. Lo, K. M.; Yi, W. Y.; Wong, P. K.; Leung, K. S.; Leung, Y.; & Mak, S. T. A genetic algorithm with new local operators for multiple
traveling salesman problems. International Journal of Computational Intelligence Systems, 2018, 11(1), 692-705.

12. Rostami, A. S.; Mohanna, F.; Keshavarz, H.; & Hosseinabadi, A. R. Solving multiple traveling salesman problem using the
gravitational emulation local search algorithm. Applied Mathematics & Information Sciences, 2015, 9(2), 1-11.

13. Yousefikhoshbakht, M.; & Sedighpour, M. A combination of sweep algorithm and elite ant colony optimization for solving the
multiple traveling salesman problem. Proceedings of the Romanian academy A 2012, 13(4), 295-302.

14. Yousefikhoshbakht, M.; Didehvar, F.; & Rahmati, F. (2013). Modification of the ant colony optimization for solving the multiple
traveling salesman problem. Romanian Journal of Information Science and Technology, 2013, 16(1), 65-80.

15. UNIVERSITÄT HEIDELBERG, INSTITUT FÜR INFORMATIK,GERHARD REINELT, Symmetric traveling salesman problem (TSP). consulted
in: https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/, april 15th, 2021.

16. UAIC, Alexandru Ioan Cuza University of Iaşi, Benchmark data for the Single-Depot Multiple Traveling Salesman Problem (multiple-TSP)
consulted in: https://profs.info.uaic.ro/~mtsplib/, jul 13th, 2021.

17. CPLEX IBM CPLEX Optimizer consulted in: https://www.ibm.com/analytics/cplex-optimizer, , aug 30th, 2021.

https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://profs.info.uaic.ro/~mtsplib/
https://www.ibm.com/analytics/cplex-optimizer

	Introduction
	Methods
	Phase 1
	Phase 2
	Phase 3

	Implementation and Results
	Conclusions and Future Work
	References

