

Proceedings 2021, 68, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/proceedings

Proceedings 1

Parallel WSAR for Solving Permutation Flow Shop Scheduling 2

Problem † 3

 Adil Baykasoğlu 1, Mümin Emre Şenol 2,* 4

1 Dokuz Eylül University, Faculty of Engineering, Department of Industrial Engineering, Izmir, TURKEY; 5
adil.baykasoglu@deu.edu.tr 6

2 Dokuz Eylül University, Faculty of Engineering, Department of Industrial Engineering, Izmir, TURKEY; 7
emre.senol@deu.edu.tr 8

* Correspondence: emre.senol@deu.edu.tr; Tel.: +90 232 301 76 21 9
† Presented at the title, place, and date. 10

Abstract: This study presents a coalition-based parallel metaheuristic algorithm for solving Permu-11
tation Flow Shop Scheduling Problem (PFSP). The novel approach incorporates five different single-12
solution based metaheuristic algorithm (SSBMA) (Simulated Annealing Algorithm, Random Search 13
Algorithm, Great Deluge Algorithm, Threshold Accepting Algorithm and Greedy Search Algo-14
rithm) and a population based algorithm (Weighted Superposition Attraction-Repulsion Algo-15
rithm) (WSAR). While SSBMAs are responsible for exploring the search space, WSAR serves as a 16
controller that handles the coalition process. SSBMAs perform their search simultaneously through 17
MATLAB parallel programming tool. The proposed approach tested on PFSP against the state of 18
the art algorithms in the literature. Moreover, the algorithm is also tested against its constituents 19
(SSBMAS and WSAR) and its serial version. Non-parametric statistical tests are organized to com-20
pare the performance of the proposed approach statistically with the state of the art algorithms, its 21
constituents and its serial version. The statistical results prove the effectiveness of the proposed 22
approach. 23

Keywords: Parallel computing; Coalition; Permutation Flow Shop Scheduling Problem 24

1. Introduction 25

Optimization is finding the solution that gives the best result in the solution space of 26
a problem. In other words, it is to achieve the best solutions under the given conditions. 27
Today, different optimization algorithms are used to solve many optimization problems 28
[1-4]. These algorithms can be classified in two groups as exact algorithms and approxi-29
mate algorithms. Exact algorithms search the entire search space and try every possible 30
alternative solution. Even if they provide the optimal solution, they need long runtime, 31
especially as the size of the problem grows. On the other hand, approximate algorithms 32
perform their solution space search through some logical operators. Although they do not 33
guarantee optimal solution, they provide near optimal solutions in reasonable time. 34
Through this superiority, most of the researchers prefer approximate algorithms in opti-35
mization problem solving. 36

Approximate algorithms are classified into two groups as heuristic and metaheuris-37
tic algorithms. While a heuristic algorithm's structure is problem-specific, a metaheuristic 38
algorithm's structure is generic, allowing it to be applied to any optimization problem. 39
Metaheuristic algorithms are more flexible than heuristic algorithms in that they can han-40
dle any problem. They can also provide better solutions to optimization problems than 41
heuristic algorithms. Metaheuristic algorithms, on the other hand, may have drawbacks 42
such as early convergence and poor speed, and a metaheuristic algorithm may be superior 43
to other metaheuristic algorithms. 44

Citation: Baykasoglu A.; Senol, M.E;

Parallel WSAR for solving Permuta-

tion Flow Shop Scheduling Problem.

Proceedings 2021, 68, x.

https://doi.org/10.3390/xxxxx

Published: date

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(http://creativecommons.org/licenses

/by/4.0/).

Proceedings 2021, 68, x FOR PEER REVIEW 2 of 7

The No Free Lunch Theorem [5] must also be mentioned at this point in order to 1
underline the logic for integrating diverse search techniques within the framework of cre-2
ating successful optimization methods. According to this theorem, no optimization 3
method beats all remaining solution processes for all optimization problems, and there is 4
no statistical difference between the performances of different metaheuristics when all 5
optimization problems are solved [6]. It is a result that implies that the computing cost of 6
finding a solution for optimization problems is the same for any solution technique. This 7
theorem can be a base point to combine various metaheuristic algorithms to tackle opti-8
mization problems more effectively. It will take substantial time to combine the various 9
metaheuristic algorithms and run them sequentially [7]. Most of the metaheuristic algo-10
rithms are designed to run sequentially, parallel execution of metaheuristic algorithms 11
can increase solution quality while shortening run time [8][9]. 12

This research is the outcome of an attempt to combine several metaheuristics in order 13
to reveal a high level of synergy and, as a result, deliver sufficient performance while 14
solving optimization problems. 15

This paper provides a new framework for addressing Permutation Flow Shop Sched-16
uling Problem (PFSP) based on a coalition of diverse metaheuristics in a parallel compu-17
ting environment. To implement the multiple metaheuristic algorithms in parallel, a new 18
optimization system combining different single solution based metaheuristic algo-19
rithms(SSBMA) (Simulated Annealing Algorithm (SA), Random Search Algorithm(RS), 20
Great Deluge Algorithm(GD), Threshold Accepting Algorithm (TA) and Greedy Search 21
Algorithm (GS)) and a controller (Weighted Superposition Attraction algorithm) is de-22
signed. 23

The remaining of the paper is organized as follows. In Section 2, parallel computing 24
is explained and in Section 3, the proposed optimization approach (p-WSAR) is intro-25
duced. In Section 4, PFSP is presented and experimental results are reported. Finally, con-26
cluding remarks are presented in Section 5. 27

2. Parallel Computing 28

Parallel computing is a type of computing architecture in which many processors execute 29
or process an application or computation simultaneously. Parallel computing helps us do 30
large computations by dividing the workload among multiple processors, all working on 31
at the same time. Most supercomputers use parallel computing principles to work. Paral-32
lel computing is also known as parallel processing. For this to happen, we need to 33
properly empower resources to execute concurrently. Parallel computing can reduce so-34
lution time, increase energy efficiency in our application, and allow us to tackle bigger 35
problems. It is a computational technique developed to solve complex problems faster 36
and more efficiently [10] [11]. 37

3. p-WSAR Algorithm 38

The p-WSAR algorithm is introduced in this section. p-WSAR is comprised of five 39
SSBMAs namely, Random Search (RS) [12], Threshold Accepting (TA) [13], Great Deluge 40
[14], Simulated Annealing (SA) [15], Greedy Search (GS) [16] and a controller WSAR [17]. 41
p-WSAR mainly has three stages namely search stage, information sharing stage and re-42
production stage. In the search stage, all of the SSBMAs explores the solution space in 43
parallel. After exploring the solution space, they share their findings with other SSBMAs 44
through WSAR algorithm superposition principle. One can see the details of the superpo-45
sition principle in the following study [17]. Then, all SSBMAs moves through their next 46
positions. In the last stage, SSBMAs’ parameters reproduced. This iterative process lasts 47
until the termination criteria is met. Notations of p-WSAR algorithm is given below. 48
The main stages of the WSAR algorithm and flow chart of the algorithm are depicted in 49
Figure 1 and Figure 2 respectively. 50

Proceedings 2021, 68, x FOR PEER REVIEW 3 of 7

 1

Figure 1. Main steps of p-WSAR 2

 3

Figure 2. The flow chart of the p-WSAR algorithm 4

4. Permutation Flow Shop Scheduling Problem and Experimental Results 5

In this section, firstly PFSP is introduced and then, experimental results are given 6

Proceedings 2021, 68, x FOR PEER REVIEW 4 of 7

4.1 Permutation Flow Shop Scheduling Problem (PFSP) 1

The PFSP has a set of m machines and a group of n jobs. Every job is made up of m 2
operations that must be accomplished on several machines. For each of the n jobs, the 3
machine ordering for the process sequence is the same. Each machine may only conduct 4
one operation at a time, and all jobs are completed sequentially according to a permuta-5
tion schedule. It is assumed that no machine problems would occur during the manufac-6
turing stage, thus all of the machines will be ready to process activities. Operation 7
preemption is also disallowed. The goal is to design a schedule that reduces the total job 8
completion time (makespan) while adhering to the preceding assumptions. 9

A permutation type n-dimensional real-number vector can be utilized in the PFSP to 10
determine the job process sequence. After identifying the job order, the makespan can be 11
calculated using the "completion time matrix approach," which Onwubolu and Davendra 12
proposed [18]. 13

4.2 Experimental Results 14

The p-WSAR's performance in PFSP is evaluated using the Taillard [19] benchmark 15
instances, which are divided into 12 groups of problems. 5 of these problems are selected 16
to test p-WSAR’s performance against some state of the art algorithms and WSAR. These 17
problems’ size (PS: (J*M) and well known solutions (WKS) is given in Table 1. The best, 18
the worst and the average performance of 30 runs of each algorithm is recorded. In all of 19
the instances, p-WSAR is able to find better solutions than other algorithms. 20

 21
 22

Table 1. Comparison of p-WSAR with some state of the art algorithms and WSAR 23

Problems Algorithm TLBO[20] HPSO[21] NPSO[22] WSAR p-WSAR
ta001

PS:(20*5)
WKS:1278

Best 1278 1278 1278 1278 1278
Worst 1297 1278 1297 1297 1278

Average 1287.2 1278 1279.9 1278.6 1278
ta011

PS:(20*10)
WKS:1582

Best 1586 1582 1582 1586 1582
Worst 1618 1596 1639 1618 1582

Average 1606 1587.3 1605.8 1592.2 1582
ta031

PS:(50*5)
WKS:2724

Best 2724 2724 2724 2724 2724
Worst 2741 2724 2729 2729 2724

Average 2729.4 2724 2725 2724.6 2724
ta051

PS:(50*20)
WKS:3771

Best 3986 3923 3938 3969 3902
Worst 4095 3963 3989 4063 3923

Average 4029.7 3944.6 3964.3 4015.9 3916
ta061

PS:(100*5)
WKS:5493

Best 5493 5493 5493 5493 5493
Worst 5527 5493 5495 5495 5493

Average 5499.4 5493 5493.2 5493.2 5493
 24

 25

In addition, the performance of p-WSAR is statistically compared with the other al-26
gorithms through nonparametric statistical tests by using average values. Table 2 indi-27
cates that (based on the Friedman test results) p-WSAR surpasses the other algorithms. 28
Furthermore, according to the Wilcoxon signed-rank test, the difference between p-WSAR 29
and HPSO is found negligible as the p> 0.1. Besides p-WSAR is performed slightly better 30
than TLBO, NPSO, WSAR as p<0.1. 31

 32
 33
 34

Proceedings 2021, 68, x FOR PEER REVIEW 5 of 7

Table 2. Non-parametric test results on Taillard Instances 1

Friedman test average rankings Wilcoxon signed-rank test between
 p-WSAR and state of the art algorithms

Algorithms Sum of Ranks p-WSAR vs. p-value

TLBO 5.0 (5) TLBO 0.0625

HPSO 1.7 (2) HPSO 0.5

NPSO 3.7 (4) NPSO 0.0625

WSAR 3.3 (3) WSAR 0.0625

p-WSAR 1.3 (1)
 2
 3

 4
Another computational study is organized to test the performance of p-WSAR with 5

its constituents (SSBMAs) in terms of solution quality. The results are presented in Table 6
3, and Table 4. According to the computational results, p-WSAR’ performance is far be-7
yond its constituents (SSBMAs). Besides, in respect of the non-parametric statistical tests, 8
p-WSAR is able to produce more effective results than its constituents. Also, there is sta-9
tistically significant difference between the performance of the p-WSAR and its constitu-10
ents since p-value is < 0.1. 11

 12
Table 3. Comparison of p-WSAR with SSBMAs 13

Problems Algorithm SA RS GD TA GS p-WSAR
ta001

PS:(20*5)
WKS:1278

Best 1286 1294 1278 1278 1284 1278
Worst 1297 1302 1297 1284 1292 1278

Average 1292.2 1296.5 1279.9 1280.6 1287.8 1278
ta011

PS:(20*10)
WKS:1582

Best 1606 1616 1596 1592 1608 1582
Worst 1620 1650 1616 1618 1642 1582

Average 1610 1632.4 1610.7 1608 1624 1582
ta031

PS:(50*5)
WKS:2724

Best 2804 2942 2806 2864 2916 2724
Worst 2908 3026 2846 2938 3002 2724

Average 2856 2978 2824.6 2886 2984 2724
ta051

PS:(50*20)
WKS:3771

Best 4206 4807 4402 4622 4424 3902
Worst 4240 6240 4803 5162 6024 3923

Average 4222.4 5465.8 4627 4838.6 5146 3916
ta061

PS:(100*5)
WKS:5493

Best 6122 8640 6248 6125 7426 5493
Worst 6378 9026 6414 6642 8424 5493

Average 6564.3 8924.7 6344.9 6348.4 8012.6 5493
 14

Table 4. Non-parametric test results on Taillard Instances p-WSAR vs. SSBMAs 15

Friedman test average rankings Wilcoxon signed-rank test between
 p-WSAR and state of the art algorithms

Algorithms Sum of Ranks p-WSAR vs. p-value

SA 3.4 (4) SA 0.0625

RS 5.8 (6) RS 0.0625

GD 2.6 (2) GD 0.0625

TA 3.2 (3) TA 0.0625

GS 5.0 (5) GS 0.0625

p-WSAR 1.0 (1)
16

Proceedings 2021, 68, x FOR PEER REVIEW 6 of 7

5.Conslusion 1

In this research, multiple metaheuristic algorithms are combined to build a coalition 2
for tackling PFSP. The suggested methodology uses WSAR as the controller to run multi-3
ple single solution based metaheuristic algorithms (SSBMAs) in parallel. The suggested 4
method is put to the test on some of the Taillard instances. According to the results, the 5
proposed approach is capable of finding the best solutions. Furthermore, the proposed 6
approach surpasses its constituents. The proposed approach's motivation is supported by 7
the computational results. Applying the proposed approach to the other type of problems 8
is planned as a future research. 9

 10
References 11

1. Precup, R.-E., David, R.-C., Roman, R.-C., Petriu, E. M., & Szedlak-Stinean, A.-I. (2021).Slime Mould Algorithm-Based Tu-12
ning of Cost-Effective Fuzzy Controllers for Servo Systems. International Journal of Computational Intelligence Systems, 14(1), 13
1042–1052. 14

2. Ang, K. M., Lim, W. H., Isa, N. A. M., Tiang, S. S., & Wong, C. H. (2020). A constrained multi-swarm particle swarm opti-15
mization without velocity for constrained optimization problems. Expert Systems with Applications, 140, 112882. 16

3. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017).Salp Swarm Algorithm: A bio-17
inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191. 18

4. Baykasoğlu, A., Dudaklı, N., Subulan, K., & Taşan, A. S. (2021). An integrated fleet planning model with empty vehicle 19
repositioning for an intermodal transportation system. Operational Research, 1-36 20

5. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary 21
Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893 22

6. Malek, R. "Collaboration of metaheuristic algorithms through a multi-agent system." International Conference on Industrial 23
Applications of Holonic and Multi-Agent Systems. Springer, Berlin, Heidelberg, 2009. 24

7. Baykasoğlu, A., Hamzadayi, A., & Akpinar, S. (2019). Single Seekers Society (SSS): Bringing together heuristic optimization 25
algorithms for solving complex problems. Knowledge-Based Systems, 165, 53-76. 26

8. Alba, E. (2005). Parallel Metaheuristics: A New Class of Algorithms. In Parallel Metaheuristics: A New Class of Algorithms. 27
https://doi.org/10.1002/0471739383 28

9. Alba, E., & Troya, J. M. (2002). Improving flexibility and efficiency by adding parallelism to genetic algorithms. Statistics and 29
Computing, 12(2), 91–114. https://doi.org/10.1023/A:1014803900897 30

10. Almasi, G. S., & Gottlieb, A. (1994). Highly parallel computing. Benjamin-Cummings Publishing Co., Inc.. 31
11. Kohli, R., & Krishnamurti, R. (1989). Optimal product design using conjoint analysis: Computational complexity and algo-32

rithms. European Journal of Operational Research, 40(2), 186-195. 33
12. Rogers, D. (1972). Random Search and Insect Population Models. The Journal of Animal Ecology, 41(2), 369. 34

https://doi.org/10.2307/3474 35
13. Dueck, G., & Scheuer, T. (1990). Threshold accepting: A general purpose optimization algorithm appearing superior to sim-36

ulated annealing. Journal of Computational Physics, 90(1), 161–175. https://doi.org/10.1016/0021-9991(90)90201- 37
14. Dueck, G. (1993). New optimization heuristics; The great deluge algorithm and the record-to-record travel. Journal of Com-38

putational Physics, 104(1), 86–92. https://doi.org/10.1006/jcph.1993.1010 39
15. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. 40

https://doi.org/10.1126/science.220.4598.671 41
16. Feo, T. A., & Resende, M. G. C. (1995). Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization, 6(2), 42

109–133. https://doi.org/10.1007/BF01096763 43
17. Baykasoğlu, A. (2020). Optimising cutting conditions for minimising cutting time in multi-pass milling via weighted super-44

position attraction-repulsion (WSAR) algorithm. International Journal of Production Research, 2020. 45
https://doi.org/10.1080/00207543.2020.1767313 46

18. Onwubolu, G., Davendra, D., 2006. Scheduling flow shops using differential evolution algorithm. Eur. J. Oper. Res. 171, 674–47
692. https://doi.org/10.1016/j.ejor.2004.08.043 48

19. Taillard, E., 1990. Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 47, 65–74. 49
https://doi.org/10.1016/0377-2217(90)90090-X 50

20. Baykasoǧlu, A., Hamzadayi, A., Köse, S.Y., 2014. Testing the performance of teaching-learning based optimization (TLBO) 51
algorithm on combinatorial problems: Flow shop and job shop scheduling cases. Inf. Sci. (Ny). 276, 204–218. 52
https://doi.org/10.1016/j.ins.2014.02.056 53

21. Lin, S.Y., Horng, S.J., Kao, T.W., Huang, D.K., Fahn, C.S., Lai, J.L., Chen, R.J., Kuo, I.H., 2010. An efficient bi-objective per-54
sonnel assignment algorithm based on a hybrid particle swarm optimization model. Expert Syst. Appl. 37, 7825–7830. 55
https://doi.org/10.1016/j.eswa.2010.04.056 56

https://doi.org/10.1023/A:1014803900897
https://doi.org/10.2307/3474
https://doi.org/10.1016/0021-9991(90)90201-
https://doi.org/10.1006/jcph.1993.1010
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/0377-2217(90)90090-X
https://doi.org/10.1016/j.eswa.2010.04.056

Proceedings 2021, 68, x FOR PEER REVIEW 7 of 7

22. Lian, Z., Gu, X., Jiao, B., 2008. A novel particle swarm optimization algorithm for permutation flow-shop scheduling to 1
minimize makespan. Chaos, Solitons and Fractals 35, 851–861. https://doi.org/10.1016/j.chaos.2006.05.082 2

 3
 4
 5
 6

	1. Introduction
	2. Parallel Computing
	Parallel computing is a type of computing architecture in which many processors execute or process an application or computation simultaneously. Parallel computing helps us do large computations by dividing the workload among multiple processors, all ...
	3. p-WSAR Algorithm
	4. Permutation Flow Shop Scheduling Problem and Experimental Results
	4.1 Permutation Flow Shop Scheduling Problem (PFSP)
	4.2 Experimental Results

	5.Conslusion

