
Proceedings

Algorithms for finding minimum dominating set in a graph†

Frank Angel Hernández Mira 1 , Ernesto Parra Inza 2, , José María Sigarreta Almira 3 and Nodari Vakhania 2*

����������
�������

Citation: Hernández Mira, F.A.;

Parra Inza, E.; Sigarreta Almira, J.M.;

Vakhania N. Algorithms for finding

minimum dominating set in a graph.

IOCA2021 2021, 1, 0.

https://doi.org/

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero; fmira8906@gmail.com
2 Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos; eparrainza@gmail.com

(E.P.I), nodari@uaem.mx (N.V)
3 Facultad de Matemáticas, Universidad Autónoma de Guerrero; josemariasigarretaalmira@hotmail.com
* Correspondence: nodari@uaem.mx
† 1st International Online Conference on Algorithms (IOCA 2021), https://ioca2021.sciforum.net/, September

27 - October 10/2021.

Abstract: In a simple connected graph G = (V, E), a subset of vertices S ⊆ V is a dominating set in 1

graph G if any vertex v ∈ V \ S is adjacent to some vertex x from this subset. It is known that this 2

problem is NP-hard, and hence there exists no exact polynomial-time algorithm that finds an optimal 3

solution to the problem. This work aims to present an exact enumeration and heuristic algorithm that 4

can be used for large-scale real-life instances. Our exact enumeration algorithm begins with specially 5

derived lower and upper bounds on the number of vertices in an optimal solution and carries out a 6

binary search within the successively derived time intervals. The proposed heuristic accomplishes a 7

kind of depth-first search combined with breadth-first search in a solution tree. The performance of 8

the proposed algorithms is far better than that of the state-of-the-art ones. For example, our exact 9

algorithm has solved optimally problem instances with order 300 in 165 seconds. This is a drastic 10

breakthrough compared to the earlier known exact method that took 11036 seconds for the same 11

problem instance. On average, over all the 100 tested problem instances, our enumeration algorithm 12

is 168 times faster. 13

Keywords: graph; dominating set; enumeration algorithm; heuristic; time complexity 14

1. Introduction 15

Finding a minimum dominating set in a graph is a traditional discrete optimization 16

problem. In a simple connected graph G = (V, E) with |V| = n vertices and |E| = m edges, 17

a subset of vertices S ⊆ V is a dominating set in graph G if any vertex v ∈ V is adjacent 18

to some vertex x from this subset (i.e., there is an edge (v, x) ∈ E) unless vertex v itself 19

belongs to set S. Any subset S with this property will be referred to as a feasible solution, 20

whereas any subset of vertices from set V will be referred as a solution. The number of 21

vertices in a solution will be referred to as its size (order). The objective is to find an optimal 22

solution, a feasible solution with the minimum possible size γ(G). 23

Since the number of subsets of set V is an exponent of n, a complete enumeration of all 24

solutions would imply an exponential cost 2n. For example, for a graph with only 20 nodes, 25

such an enumeration would take centuries on modern computers. Since the problem is 26

known to be NP-hard, there exists no exact algorithm that finds an optimal solution in 27

polynomial time. An exact exponential-time enumeration algorithm was suggested in 28

[9–11]. Although the authors in [10,11] do not provide any experimental study of their 29

algorithm, they give an exact expression for its running time in terms of the number 30

of vertices n, O(1, 4969n). On one hand, this is better than the cost 2n for a complete 31

enumeration of all feasible solutions. On the other hand, the algorithm remains impractical. 32

For instance, for graphs with already 100 nodes, it would run for more than 5 years. Non- 33

exact heuristic algorithms that run in a reasonable time but which may deliver solutions of 34

unacceptable quality were proposed in [1–8]. 35

IOCA2021 2021, 1, 0. https://doi.org/10.3390/a1010000 https://ioca2021.sciforum.net/

https://ioca2021.sciforum.net/
https://www.mdpi.com
https://orcid.org/0000-0001-5480-8257
https://orcid.org/0000-0002-7901-4936
https://orcid.org/0000-0002-9013-9334
https://www.mdpi.com/article/10.3390/a1010000?type=check_update&version=1
https://doi.org/10.3390/a1010000
https://doi.org/10.3390/a1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://ioca2021.sciforum.net/
https://doi.org/10.3390/a1010000
https://ioca2021.sciforum.net/

IOCA2021 2021, 1, 0 2 of 8

In this work, we aim to develop an exact implicit enumeration algorithm that can 36

be used in real-life scenarios with graphs with a considerable number of vertices. Our 37

algorithm applies the lower and upper limits, L and U, respectively, on the number 38

of vertices in an optimal solution. A lower bound L is derived from an earlier known 39

results (see [1,12,13]), and an upper bound U is the size of a feasible solution obtained by 40

the approximation algorithm from [1]. The proposed search method allows discarding 41

a considerable number of solutions in the enumeration process. We combined it with 42

a binary search that made the overall enumeration process more efficient. Instead of 43

enumerating the solutions of all possible sizes from the range [L, U], the sizes are derived 44

from this interval by the binary division process (reducing U − L possible solution sizes to 45

log(U − L)). 46

Remarkably, the overall enumeration algorithm has solved optimally problem in- 47

stances with up to 300 vertices in 165 seconds. This is a drastic breakthrough compared 48

to the state-of-the-art exact method from Van Rooij and Bodlaender [10], which required 49

11036 seconds for the same instance. On average, for random instances for graphs with a 50

density approximately equal to 0.5 (density(G) = 2|E|
|V|(|V|+1)), our algorithm found optimal 51

solutions 168 times faster. The proposed heuristic algorithm carries out a kind of depth- 52

first search combined with breadth-first search in a solution tree. Among 150 randomly 53

generated problem instances with up to 770 vertices with the density between 0.2 and 0.5, 54

our heuristic has improved the earlier known state-of-the-art solutions (Hernandez et al. 55

[1]) in 98.62% of the instances. 56

2. Materials and Methods 57

2.1. Implicit enumeration 58

In this section, we describe our algorithm. For that, we define some basic properties 59

on a graph. The diameter d(G) of graph G is the maximum number of edges on the shortest 60

path between any pair of vertices in that graph, and the radius r(G) in graph G is the 61

minimum number of edges on the shortest path (one with the minimum number of edges) 62

between any pair of vertices in that graph. A support vertex is a vertex adjacent to a degree 63

one vertex. We denote the set of support vertices in graph G by Supp(G), the set of vertices 64

with decree one by l(G), and the degree of a vertex with the maximum number of neighbors 65

in graph G by ∆(G). 66

Initially, we create a feasible solution using the approximation algorithm from [1]. 67

This solution defines the initial upper bound U on the size of a feasible solution, whereas 68

the initial lower bound L is obtained based on the following known results. 69

Theorem 1. [12] γ(G) ≥ n
∆(G)+1 . 70

Theorem 2. [12] γ(G) ≥ 2r(G)
3 and γ(G) ≥ d(G)+1

3 . 71

Theorem 3. [12] |Supp(G)| ≤ γ(G) ≤ n− |Lea f (G)|. 72

The next corollary is an immediate consequence of the Theorems 1, 2 and 3. 73

Corollary 1. L = max{ n
∆(G)+1 , 2r(G)

3 , d(G)+1
3 , s} is a lower bound on the number of vertices in a 74

minimum dominating set. 75

The solutions of the size ν ∈ [L, U] are generated and tested for the feasibility based 76

on the specially formed priority list of solutions. The sizes are derived by the standard 77

binary division search accomplished in the interval [L, U] as described below. For each 78

created solution σ of size ν feasibility condition is verified, i.e., it is verified if the solution 79

forms a dominating set. Below we describe the general framework of the algorithm, and 80

then we describe how the priority lists are created. 81

IOCA2021 2021, 1, 0 3 of 8

• If solution σ is feasible, then the current upper bound U is updated to ν and the 82

algorithm proceeds with the reduced in this way time interval (continuing with the 83

next to ν (smaller) trial value from the interval [L, ν) derived by the binary division); if 84

all trial νs were already tested, then the algorithm returns the created feasible solution 85

with the minimum size and halts. 86

• If solution σ is not feasible, then the algorithm calls Procedure_Next(ν) which selects 87

the next to σ solution of size ν from the corresponding priority list (see below), and 88

the algorithm is repeatedly invoked for that solution. 89

• If Procedure_Next(ν) returns NIL, that is, all the (potentially optimal) solutions of 90

size ν were already tested for the feasibility (hence none of them being feasible), the 91

current lower bound L is updated to ν and the algorithm proceeds with the reduced 92

in this way time interval (continuing with the next to ν (larger) trial value from the 93

interval [ν, U) derived by the binary division); if all trial νs were already derived, then 94

the algorithm returns the created feasible solution with the minimum size halts. 95

2.2. Procedure_Next(ν) 96

For each trial ν ∈ [L, U], the solutions of size at most ν are generated in a special 97

priority order that is intended to help in a faster convergence to a feasible solution. Heuristic 98

considerations are used to determine that order. As briefly noted, Procedure_Next(ν) 99

determines the (next) solution σh(ν) of size ν at iteration h. An auxiliary subroutine 100

Procedure_Priority_LIST() generates a priority list of vertices which is used for the creation 101

of solution σh(ν). While creating this list, the support and leaf vertices are ignored: by 102

Theorem 3, for every iteration h, all vertices from set Supp(G) can be included in solution 103

σh(ν) and no vertex from set l(G) is to be part of it. 104

Iteratively, if solution σh(ν) is feasible, Procedure_Next(ν) returns that solution and 105

the algorithm switches to the next trial ν; it halts if all trial sizes were already considered. 106

Otherwise, Procedure_Next(ν) creates next solution σh+1(ν) which is obtained from solu- 107

tion σh(ν) by a vertex interchange as follows. Let v /∈ σh(ν) be the next vertex from the 108

priority list, and let v′ ∈ σh(ν) be the lowest active degree vertex in solution σh(ν). 109

If the size of solution σh(ν) is less than ν, then 110

σh+1(ν) := σh(ν) ∪ {v};

If the size of solution σh(ν) is already ν (it cannot be more than ν), then 111

σh+1(ν) := (σh(ν) \ {v′}) ∪ {v}.

Procedure_Next(ν) verifies the feasibility of each solution σh(ν) generated. 112

Remark 1. The feasibility of every generated solution of a given size is verified in time O(n). 113

Now we can give a formal description of our enumeration algorithm. 114

2.3. Algorithm proposed 115

Let s = |Supp(G)| and l = |l(G)|. Now, with the above mentioned and Remark 1, we 116

obtain the following lemma. 117

Lemma 1. The time complexity of Algorithm_BDS is 118

O
(

n log(
n
2
− 1)

(
n

n/4

))
.

Proof of Lemma 1. Since binary search in the interval [L, U] is carried out, the total number 119

of external iterations in Algorithm 1 (i.e., the number of different sizes ν) is at most 120

log(U − L). For a given size ν, the number of the generated solutions of that size is 121

IOCA2021 2021, 1, 0 4 of 8

Algorithm 1 Algorithm_BDS

Input: A graph G.
Output: A γ(G)-set S.
Supp(G) := Set of support vertex of graph G;
l(G) := Set of leaf vertex of graph G;
L := max{ n

∆(G)+1 , 2r
3 , d+1

3 , |Supp|};
S := Feasible solution proposed in [1];
U := |S|;
ν := b(L + U)/2c;
Procedure_Priority_LIST();

{ iterative step }
while U − L > 1 do

if Procedure_Next(ν) returns NIL then
L := ν;
ν := b(L + U)/2c;

else { A feasible solution was found (σh(ν))}
U := ν;
ν := b(L + U)/2c;
Procedure_Priority_LIST();

end if
end while

bounded by (n−s−l
ν−s). Indeed, in the worst case all solutions of cardinality ν are considered. 122

By Theorem 3, the set Supp(G) forms part of all generated solutions, whereas no leaf vertex 123

belongs to any created solution and hence (n−s−l
ν−s) is an upper bound on the number of 124

solutions of size ν that the algorithm creates. To establish the feasibility of solution σh(ν), 125

Procedure_Next(ν) verifies if every vertex x ∈ V(G) is in σh(ν) or if it is adjacent to a 126

vertex in σh(ν), which clearly tales time O(n). For the purpose of this estimation, let us 127

assume that ν = b(U + L)/2c (as the maximum number of combinations is reached for 128

this particular ν). We may also express ν in terms of n as ν = b(n
2 + 1)/2c = n

4 using 129

U ≤ n/2, L ≥ 1, s ≥ 0 and l ≥ 0. Summing up the above, we have an overall bound 130

O
(

n log(
n
2
− 1)(n

n/4)
)

on the cost of the algorithm. 131

2.4. A combined DFS and BFS search 132

Our second algorithm DBS (Depth Breadth Search), combines depth-first search with 133

a breadth-first search in solution tree T, a binary tree of depth n, in which vertex vi is 134

associated with level i. The path from the root to a leaf uniquely defines a solution in that 135

tree. With each solution, a binary number with n digits is naturally associated, with 0 entry 136

in position i if vertex vi does not pertain to that solution, and with the entry 1 otherwise. 137

Every path in tree T from the root to a leaf represents a binary number of n digits and the 138

corresponding solution. If the edge of this path at level i of the tree is marked as 0 then 139

vertex vi does not belong to that solution, and if that edge is marked as 1 then it belongs to 140

the solution. 141

Given solution σ = (v1, v2, . . . , vU0) obtained by the greedy algorithm from [1], we 142

define an auxiliary parameter β = bα(U − s)c + s, for 0 < α < 1, as the size of a base 143

solution σ(β) (U is the current upper bound, initially it is U0, s = |Supp(G)|). A base 144

solution is constructed by the procedure and serves as a basis for the construction of the 145

following larger sized solutions sharing the β vertices with solution σ(β). In case none 146

of these extensions of solution σ(β) turn out to be feasible, the current base solution is 147

replaced by another base solution of size β and the search similarly continues. 148

The set of vertices in a base solution is determined according to one of the following 149

alternative rules: 150

1. The first β vertices (v1, v2, . . . , vβ) from solution σ. 151

2. Randomly selected β vertices from solution σ. 152

3. Randomly selected β vertices from set V \ l(G). 153

IOCA2021 2021, 1, 0 5 of 8

With each of these options, the vertices in a newly determined base solution are 154

selected in such a way that it does not coincide with any of the earlier formed base 155

solutions. Typically, the procedure creates the first base solution by rule (1) or rule (2). The 156

following base solutions are obtained by rule (3) until the last such generated base solution 157

coincides with an earlier created one. If this occurs, then the remaining base solutions are 158

created just in the lexicographic order (according to their binary representations). 159

Each base solution is iteratively extended by one vertex per iteration and each of these 160

extensions are checked for feasibility until either (i) one of them turns out to be feasible 161

or (ii) an extension of size U − 1 is created. In the latter case (ii) if the corresponding 162

extension of size U − 1 is not feasible, the next base solution with size β is constructed and 163

the procedure is repeated for the newly created base solution. In the former case (i), the 164

current lower bound is updated; correspondingly, the parameter β is also updated, the first 165

base solution of the new size β is created and the procedure is again repeated for this newly 166

created base solution. Procedure DBS halts if the extensions of all the base solutions of the 167

current size β were tested and none of them turned out to be feasible. Then γ(G) = U and 168

the procedure return the corresponding feasible solution of size U, which is minimal. 169

The definition of the upper bound U, lower bound L, and the fact that none of the 170

solutions of size lower to U − 1 is feasible, immediately follows from the following remark. 171

Remark 2. The Procedure DBC returns a minimal dominating set. 172

Remark 3. If none extension of all base solutions of current size β is feasible and β > L, then 173

β < γ(G) ≤ U. 174

We complete the description of Procedure DBS by specifying how the extensions of 175

each base solution are generated. A base solution σ(β) is iteratively extended in at most 176

U − 1− β− s iterations, by one vertex per iteration. Let σi(β) be the extension of solution 177

σ(β) by iteration i, β < i < U, where we let σ0(β) = σ(β). Then σi(β) = σi−1(β) ∪ xi, 178

where xi ∈ V \ l(G) \ σi−1(β) is determined by one of the following selection rules. In case 179

solution σ(β) was formed by rule (1), xi is selected randomly, whereas if solution σ(β) 180

was formed by either of the rules (2) and (3),xi is set to be a vertex with the higher active 181

degree[1] from set V \ l(G) \ σi−1(β). 182

The Procedure DBS does not guarantee the optimal solution, but it allows to improve 183

the solutions of [1]. Some computational experiments are discussed in Table 3 of the Results 184

section. 185

3. Results 186

In this section, we describe our computational experiments. We have implemented 187

the algorithms in C++ using Visual Studio for Windows 10 (64 bits) on a personal computer 188

with Intel Core i7-9750H (2.6 GHz) and 12 GB of RAM DDR4. The order and the size of 189

an instance were generated randomly utilization function random(). To complete the set 190

E(G), each new edge was added in between two yet non-adjacent vertices randomly until 191

the corresponding size was attained. The results for the instances are shown in Table 192

1. We can observe a significant difference in the time of the algorithms tested. We have 193

obtained that for 100% of the analyzed instances, with a density greater or equal to 0.5, 194

Time(BDS) ≈ 1
168 Time(MSC). The Time(A) function returns the time in seconds that it 195

takes for algorithm A to give a response. 196

IOCA2021 2021, 1, 0 6 of 8

Table 1. Graphs with density ≈ 0.5.

No. |V(G)| |E(G)| Time
BDS (s)

Time
MSC (s)

Lower Bounds
γ(G)

Upper Bounds
n

∆(G)+1
d+1

3
2r
3 |Supp(G)| |S| n− ∆(G)

1 121 2979 4.14543 48.6736 1 1 1 1 5 6 56
2 121 2979 0.12797 48.4455 1 1 1 2 4 4 59
3 121 3015 0.114021 49.8324 1 1 1 1 4 4 60
4 127 3267 4.99421 61.1054 1 1 1 1 5 6 58
5 130 3449 0.941822 71.8736 2 1 1 1 5 5 56
6 131 3533 0.161308 75.7072 1 1 1 1 4 5 61
7 134 3632 5.90682 85.7137 1 1 1 1 5 5 59
8 136 3687 6.43478 92.3635 1 1 1 1 5 5 68
9 138 3912 6.74142 104.484 1 1 2 1 5 6 64
10 141 4085 0.189412 115.303 1 1 1 1 4 4 61
11 142 4074 7.31829 113.367 1 1 1 2 5 6 71
12 145 4085 8.31298 110.847 1 1 1 2 5 5 70
13 147 4328 8.35853 144.31 1 1 1 1 5 5 74
14 151 4575 10.1057 171.704 1 1 1 1 5 6 70
15 157 4996 11.652 220.932 1 1 1 3 5 5 75
16 163 5329 0.275169 284.979 1 2 1 1 4 4 78
17 167 5229 6.8164 288.135 1 1 1 4 5 5 80
18 171 5984 18.9668 421.062 1 1 1 1 5 6 86
19 176 6201 19.9994 480.029 1 2 1 1 5 5 87
20 182 6629 23.0523 611.24 1 1 1 2 5 6 87
21 185 6849 24.667 666.839 1 1 1 1 5 5 93
22 189 7147 23.8574 770.36 1 1 1 1 5 5 91
23 194 7529 28.294 915.361 1 1 1 1 5 5 96
24 198 7842 30.5348 1041.98 2 1 1 1 5 5 101
25 201 8081 31.0313 1136.67 2 1 1 2 5 5 103
26 207 8569 35.9424 1361.77 2 1 1 1 5 6 105
27 209 8735 37.3502 1454.44 1 2 1 1 5 5 104
28 215 9243 42.9108 1810.09 1 1 1 1 5 5 103
29 217 9415 42.881 1892.35 1 1 1 3 5 5 107
30 221 9765 49.91 2011.15 2 1 1 1 6 7 115
31 226 10211 51.2046 2278.89 2 1 1 1 5 5 114
32 230 10575 4.6399 2537.6 1 2 1 4 5 5 111
33 233 10852 57.8398 2793.59 2 1 1 1 5 6 118
34 238 11322 65.053 3093.64 2 1 1 1 5 6 123
35 242 11705 67.0996 3463.78 1 1 1 2 5 5 119
36 250 12491 83.1936 4065.44 1 2 1 1 5 5 125
37 257 13199 93.983 4919.85 2 1 1 1 5 6 131
38 264 13927 112.518 5925.73 2 1 1 2 5 5 135
39 269 14459 112.609 6102.11 1 1 1 1 5 6 134
40 275 15111 114.446 6887.98 2 1 1 1 5 6 144
41 283 16002 418.72 8040.4 1 1 1 1 5 6 141
42 290 16803 148.712 9215.59 2 1 1 1 5 5 152
43 296 17505 155.861 10269.4 2 1 1 1 5 6 152
44 300 17981 165.301 11035.8 2 1 1 1 5 5 151

When analyzing graphs with a density of approximately 0.2, the execution times of the 197

analyzed algorithms behave differently from the cases analyzed previously. In low-density 198

instances, the MSC algorithm is faster than the algorithm proposed in this paper. The 199

results of the experiments, with this type instance, can be seen in Table 2. 200

Table 2. Graphs with density ≈ 0.2.

No. |V(G)| |E(G)| Time
BDS (s)

Time
MSC (s)

Lower Bounds
γ(G)

Upper Bounds
n

∆(G)+1
d+1

3
2r
3 |Supp(G)| |S| n− ∆(G)

1 50 286 1.89587 0.616285 2 1 1 2 6 6 33
2 60 357 3.13747 0.715912 2 1 1 1 6 7 40
3 70 524 7.04679 1.46234 2 1 1 1 6 6 45
4 80 678 12.5997 2.81906 2 1 1 1 6 7 53
5 90 842 390.903 5.18101 3 1 1 1 7 8 63
6 100 1031 803.741 8.31738 2 1 1 2 7 7 67
7 101 1051 804.208 8.69229 3 1 1 1 7 7 70
8 106 1154 1143.92 10.8275 2 1 1 1 7 8 71
9 113 1306 1594.92 16.2542 3 1 1 1 7 7 77

10 117 1398 3364.4 19.955 3 1 1 2 8 9 84
11 121 1493 2240.49 23.1156 3 1 1 1 7 7 87

IOCA2021 2021, 1, 0 7 of 8

The computational experiments with the Procedure DBS showed that in 98.62% of the 201

analyzed instances the solution given by [1] was improved. Table 3 shows some of these 202

results. 203

Table 3. Results Procedure DBS.

No. |V(G)| |E(G)| |S| Solution 1 Solution 2
β σi(β) generates Time(s) |DS| β σi(β) generates Time(s) |DS|

1 600 84557 12 4 43 37.815 11
2 610 87490 12 4 3225 2876.67 11
3 620 90472 13 3 21 20.953 12 3 6 25.745 11
4 630 93505 13 4 107 90.532 12 3 35266 29750 11
5 640 96587 13 4 22 23.207 11
6 650 102571 9 2 No solution found
7 660 105798 10 3 4080 4635.46 8
8 670 109076 9 2 18 24.966 8
9 680 109417 12 4 65 86.754 11

10 690 117488 10 3 812 1055.51 9
11 700 116132 13 4 39 55.176 12
12 710 120941 10 3 12 21.208 9
13 720 127996 9 2 11299 15411.1 8
14 730 131598 9 2 25142 37801.4 8
15 740 130162 13 4 52 72.597 12 3 31056 40681.6 11
16 750 137096 10 3 4498 6453.14 9
17 760 138953 10 3 9 18.662 9
18 770 141210 13 4 13 24.707 12 3 9561 16496.5 11

4. Conclusions 204

We proposed an exact branch and bound and an approximation heuristic algorithms 205

for the domination problem in general graphs which outperform the state-of-the-art exact 206

and approximation, respectively, algorithms from Van Rooij et al. [10] and Hernández et al. 207

[1], respectively. The first proposed exact Binary Domination Search algorithm combines 208

upper and lower bounds with binary search. The initial lower bound is obtained directly 209

from the earlier known properties and the initial upper bound is obtained by the earlier 210

known best heuristic algorithm for the problem. The practical behavior of the algorithm 211

was tested on a considerable number of the randomly generated problem instances with a 212

size up to 300. On random instances with graphs with an average density of 0.5 algorithms 213

from Van Rooij et al. [10] delayed 168 times more than the Binary Domination Search 214

algorithm. The approximate Depth Breadth Search heuristic combine depth-first search 215

with breadth-first search and was able to improve solutions delivered by the earlier known 216

state-of-the-art algorithm (Hernández et al. [1]) in 98.62% of the tested instances. 217

Author Contributions: The authors contributed equally to this research. Investigation, F.A.H.M., 218

E.P.I., J.M.S.A. and N.V.; writing—review and editing, F.A.H.M., E.P.I., J.M.S.A. and N.V. All authors 219

have read and agreed to the published version of the manuscript. 220

Funding: This work was partially supported by SEP PRODEP publication grant. The fourth author 221

was supported by SEP PRODEP 511/6 grant and CONACyT 2020-000019-01NACV-00008 grant. 222

Institutional Review Board Statement: Not applicable. 223

Informed Consent Statement: Not applicable. 224

Conflicts of Interest: The authors declare no conflict of interest. 225

References
1. Hernández Mira, F.A.; Parra Inza, E.; Sigarreta Almira, J.M.; Vakhania, N. A polynomial-time approximation to a minimum

dominating set in a graph. Theoretical Computer Science. A submitted manuscript.
2. Campan, A.; Truta, T.M.; Beckerich, M. Fast Dominating Set Algorithms for Social Networks. MAICS, 2015, pp. 55–62.
3. Eubank, S.; Kumar, V.A.; Marathe, M.V.; Srinivasan, A.; Wang, N. Structural and algorithmic aspects of massive social networks.

Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, 2004, pp. 718–727.
4. Foerster, K.T. Approximating fault-tolerant domination in general graphs. 2013 Proceedings of the Tenth Workshop on Analytic

Algorithmics and Combinatorics (ANALCO). SIAM, 2013, pp. 25–32. doi:https://doi.org/10.1137/1.9781611973037.4.
5. Gibson, M.; Pirwani, I.A. Approximation algorithms for dominating set in disk graphs. arXiv preprint arXiv:1004.3320 2010.

https://doi.org/https://doi.org/10.1137/1.9781611973037.4

IOCA2021 2021, 1, 0 8 of 8

6. Hunt III, H.B.; Marathe, M.V.; Radhakrishnan, V.; Ravi, S.S.; Rosenkrantz, D.J.; Stearns, R.E. NC-approximation schemes for NP-
and PSPACE-hard problems for geometric graphs. Journal of algorithms 1998, 26, 238–274. doi:https://doi.org/10.1006/jagm.1997.0903.

7. Jha, A.; Pradhan, D.; Banerjee, S. The secure domination problem in cographs. Information Processing Letters 2019, 145, 30–38.
doi:https://doi.org/10.1016/j.ipl.2019.01.005.

8. Chvatal, V. A greedy heuristic for the set-covering problem. Mathematics of operations research 1979, 4, 233–235.
doi:https://doi.org/10.1287/moor.4.3.233.

9. Gaspers, S.; Kratsch, D.; Liedloff, M.; Todinca, I. Exponential time algorithms for the minimum dominating set problem on some
graph classes. ACM Transactions on Algorithms (TALG) 2009, 6, 1–21. doi:https://doi.org/10.1145/1644015.1644024.

10. Van Rooij, J.M.; Bodlaender, H.L. Exact algorithms for dominating set. Discrete Applied Mathematics 2011, 159, 2147–2164.
doi:https://doi.org/10.1016/j.dam.2011.07.001.

11. Fomin, F.V.; Grandoni, F.; Kratsch, D. A measure & conquer approach for the analysis of exact algorithms. Journal of the ACM
(JACM) 2009, 56, 1–32. doi:https://doi.org/10.1145/1552285.1552286.

12. Haynes, T. Domination in Graphs: Volume 2: Advanced Topics; Routledge, 2017.
13. Cabrera Martínez, A.; Hernández-Gómez, J.C.; Inza, E.P.; Sigarreta, J.M. On the Total Outer k-Independent Domination Number

of Graphs. Mathematics 2020, 8, 194. doi:https://doi.org/10.3390/math8020194.

https://doi.org/https://doi.org/10.1006/jagm.1997.0903
https://doi.org/https://doi.org/10.1016/j.ipl.2019.01.005
https://doi.org/https://doi.org/10.1287/moor.4.3.233
https://doi.org/https://doi.org/10.1145/1644015.1644024
https://doi.org/https://doi.org/10.1016/j.dam.2011.07.001
https://doi.org/https://doi.org/10.1145/1552285.1552286
https://doi.org/https://doi.org/10.3390/math8020194

	Introduction
	Materials and Methods
	Implicit enumeration
	Procedure_Next()
	Algorithm proposed
	A combined DFS and BFS search

	Results
	Conclusions
	References

