

Inhibition of lipid peroxidation (TBARS)

Antimicrobial

properties

Antioxidant

activity

Nutritional, chemical, and antimicrobial profile of Apium graveolens L.

Izamara de Oliveira,^{1,2#*} Sandrina Heleno,¹ Márcio Carocho¹, Celestino S. Buelga², Maria José Alves¹, Isabel C.F.R. Ferreira¹, Lillian Barros¹

¹Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Portugal

² Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Spain *izamara@ipb.pt

RESULTS

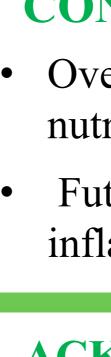
According to the results of the nutritional analysis, the celery consisted mainly of 95% water, followed by ash, protein and fat content. Glucose was the major sugar.

Table 1. Nutritional parameters in g/100 g of dry weight.

Compounds	Results				
a_{w}	0.996 ± 0.003				
Moisture	95.95 ± 0.02				
Protein	10.6 ± 0.4				
Fat	1.50 ± 0.01				
Ash	16.4 ± 0.04				
Energy value kcal	$341.84{\pm}~0.20$				
Soluble	sugar				
Fructose	14.6 ± 0.1				
Glucose	42 ± 1				
Sucrose	3.20 ± 0.04				

Of the 19 fatty acids identified, linoleic (48.0 \pm 0.1%), palmitic (24.2 \pm 0.2%), linolenic (7.96 \pm 0.04%) and cis-docosahexaenoic acids (3, 95 \pm 0.05%) were the main molecules. As for organic acids, malic and oxalic acids were the main compounds.

 Table 2. Bioactivities.


	• • • • •						
Organ	Organic Acids						
(g/100 g	(g/100 g dry weight)						
Oxalic	5.148 ± 0.086						
Malic	6.8 ± 0.3						
Fumaric	$0,052 \pm 0.002$						
Ascorbic	0.104 ± 0.002						
Fatty aci	Fatty acid profile (%)						
SFA	34.0 ± 0.1						
PUFA	61.01 ± 0.01						
MUFA	3.55 ± 0.01						

* For the calculations, the following straight lines were used: oxalic acid: y = 1E+07x + 231891; malic acid: y = 950041x + 2318916255.6; fumaric acid: y = 1E+08x + 614399; ascorbic acid: y =4E+07x + 1E+06.

* SFA: Saturated fatty acids; PUFA: Polyunsaturated Fatty Acid; MUFA: Monounsaturated Fatty Acids.

Regarding the bacterial strains, the extract caused higher inhibition against *Salmonella Thyphimurium* (2.5 mg/mL). For the antifungal activity, both Aspergillus brasiliensis and Aspergillus fumigatus were inhibited at MIC (minimum inhibitory concentration) value of 10 mg/mL.

Table 3. Antioxidant and antimicrobial activity of *A. graveolens*.

		Antioxidant a	ctivity (µ	g/mL)						
TBARS	2315 ± 143		V V	0 /						
		Antibacterial a	ctivity (n	ng/mL)						
			Positive Control							
	Apium		Streptomicin Methicilin			Ampicillin				
			1 mg/mL		1 mg/mL		20 mg/mL			
Antibacterial Activity	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC		
Gram-negative bacteria										
Enterobacter Cloacae	10	>10	0.007	0.007	n.t.	n.t	0.15	0.15		
Escherichia coli	5	>10	0.01	0.01	n.t.	n.t.	0.15	0.15		
Pseudomonas aeruginosa	>10	>10	0.06	0.06	n.t.	n.t.	0.63	0.63		
Salmonella enterocolitica	2.5	>10	0.007	0.007	n.t.	n.t.	0.15	0.15		
Yersinia enterocolitica	10	>10	0.007	0.007	n.t.	n.t.	0.15	0.15		
Gram-positive bacteria										
Bacillus cereus	>10	>10	0.007	0.007	n.t.	n.t.	n.t.	n.t.		
Listeria monocytogenes	10	>10	0.007	0.007	n.t.	n.t.	0.15	0.15		
Staphylococcus aureus	5	>10	0.007	0.007	0.007	0.007	0.15	0.15		
	Anti	ifungal activity	(MIC/MI	FC, mg/r	nL)					
	Apium G.	Ketoconazole								
Aspergillus brasiliensis	10/>10	0.06/0.125								
Aspergillus fumigatus	10/>10	0.5/1								

*Maximum concentration tested was 10mg/m for activity antibacterial.

*Maximum tested concentration was 10 mg/mL and 1 mg/mL for the antifungal. * Positive control TBARS: Trolox = $139 \pm 5 \mu g/mL$.

CONCLUSION

• Overall, it can be concluded that celery has a good nutritional profile; thus, exploring this food in terms of nutritional benefits in addition to its good bioactive properties is a valuable research topic.

• Future work will be further conducted regarding its bioactivities testing its anti-proliferative, toxic and antiinflammatory activity.

ACKNOWLEDGEMENTS

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020). L. Barros thanks the national funding by FCT through the institutional scientific employment program-contract for her contract, while M. Carocho and S. Heleno thank FCT through the individual scientific employment program-contracts (CEECIND/00831/2018 and CEECIND/03040/2017). I Oliveira thanks FCT for her PhD grant (BD/06017/2020).

