

UNIVERSIDAD DE MURCIA

Targeted and non-targeted gas chromatography-mass spectrometry analysis of volatile compounds released from recycled and virgin polyethylene terephthalate polymer: Authentication study

Dra. Rosa María Peñalver Soler, University of Murcia, Spain

Introduction

Plastic production has highly increased

Recycling plastic packaging is needed to reduce plastic residue, BUT there is a need to control its quality

Authentication of recycled packaging is required to avoid frauds.

Introduction

Analytical strategy for VOCs determination and authentication of recycled plastic content

6

Polyethylene Terephtalate mineral water bottles: virgin & different recycled content

+ 2-chloroanisole (Internal Standard, IS)

Selection of the HS incubation temperature and time

Surface Response Design method (face-centered):

NON-TARGETED APPROACH FOR VOCs

Homemade database including VOCs from the literature

Compounds	ions (m/	z)		
2,4-Ditertbutyl phenol (DBP)	57, 191, 206			
2-Ethyl-1,3-dimethylbenzene	91, 106, 107			
10-Methylnonadecane	57, 71, 282	Decanal	41, 43, 156	
5-Methyl undecane	43, 57,156	1, 2-dichlorobenze ne	146, 148, 150	
7-Methyl hexadecane	57, 71, 240	Toluene	91, 92, 93	
Tritetracontane	57, 71, 606	1-octene	43, 55, 112	
Tetratetracontane	57, 71, 619	2-undecanone	43, 58, 170	
1-Chlorooctade cane	43, 57, 289	2-nonanone	43, 58, 142	15-0
Heptacosane	43, 57, 380	2-heptadecanone	43, 58, 254	
Decane	43, 57, 142	2-heptenal	27, 41, 112	
Hexadecane	43, 57, 226	2-octenal	41, 55, 126	
Nonadecane	43, 57, 268	2-decenal	41, 43, 154	
Dodecane	43, 57, 170	n-Acetic acid	43, 45, 60	
Octadecane	43, 57, 254	n-Hexanoic acid	60, 73, 87	
Tetradecane	43, 57, 198	Octadecanoid acid	43, 73, 284	
Propyl octyl ether	43, 57, 71	Acetone	42, 43, 58	
10-Methyleicosane	43, 57, 296	2,6-Dimethyl-nonane	43, 57, 156	
3,8-Dimethyldecane	43, 57, 170	3-Methyl-5-propyl-nona ne	57, 71, 184	
2,6,10-Trimethyldodecane	57, 71, 212	4-Methyl-decane	43, 71, 156	
1,1'-Oxybis dodecane	43, 57, 354	2-Methyl-decane	43, 57, 156	
1,1'-Oxybis decane	43, 57, 298	3-Methyl-decane	57, 71, 156	
Tetratriacontane	57, 71, 479	3,7-Dimethyl-decane	43, 57, 170	
Benzophenone	77, 105, 182	3,6-Dimethyl-undecane	43, 57, 184	
Dibutyl phthalate (DBP)	149, 150, 278	2-Methyl-dodecane	43, 57, 184	
Diethyl phthalate (DEP)	149, 177, 222	2-butanamine	41, 44, 86	
Heptanal	41, 70, 114	n-Propyl acetate	43, 61, 73	
Dodecanal	43, 57, 184	Methyl benzene	91, 92, 93	

Chromatogram of an unspiked real sample to which the IS was added (50 ng g^{-1})

(1) Ethyl acetate, (2) 2-Methyl-1,3-dioxolane, (3) Propyl acetate, (4) Pentanal, (5) Hexanal, (6) Heptanal,
(7) Nonanal, (8) Decanal, (9) IS and (10) 5-Methyl undecane

CHEMOMETRIC ANALYSIS OF THE VOLATILE FINGERPRINT

Classificatory purposes: OPLS-DA (Orthogonal partial least squares model): UV scaling without logarithmic transformation

Quantitative approach: PLS regression model

100% recycled, ≤ 50% recycled and virgin PET samples showed some differences in their VOCs and formed three different regions in the PCA score plot related to their VOCs fingerprint

Good fit between reference (real) and predicted value : Correlation 97.7%

Analytical characteristics of the developed HS-GC-MS method for VOCs quantification

Compound	Linearity range (ng g ⁻¹)	QL ^a (ng g ⁻¹)	RSD, %	RSD, %	
Ethyl acetate	10-1000	10.4	3.6	4.2	 Virgin PET sample fortified at 50 ng g⁻¹ with all analytes
2-Methyl-1,3-dioxolane	1.25-100	1.3	2.4	2.0	including the IS (n=10)
Pentanal	12.5-1000	12.5	1.6	1.9	
Hexanal	1.25-100	1.3	7.2	8.0	100% recycled PET sample
o-xylene	2-100	2.0	2.3	1.9	fortified at 50 ng g-1 with all
Ethyl benzene	10-1000	10.4	6.0	6.8	analytes including the IS (n=10)
Styrene	2-100	2.0	3.7	4.9	
p-xylene	2-100	2.0	4.6	5.7	
Cumene	25-100	2.0	3.1	4.1	
Alpha-pinene	12.5-1000	12.5	3.9	4.9	RECOVERY STUDIES:
Benzaldehyde	12.5-1000	12.5	6.9	7.7	- Two 100% recycled PET samples
Octanal	10-1000	10.4	5.4	4.8	í í
Alpha-terpinene	10-1000	10.4	2.4	3.2	- Spiked at two levels (25 and 100 ng g^{-1}
Limonene	25-1000	25	8.9	8.1	- Recovery values: 90-110%
Linalool	12.5-1000	12.5	4.5	4.7	
Nonanal	1.25-100	1.3	8.7	8.1	
Naphthalene	12.5-1000	12.5	3.2	5.1	
Butylhydroxytoluene	12.5-1000	12.5	9.3	11.5	

Analyte content^a (ng g^{-1}) of PET mineral bottle samples

Samples	Ethyl acetate	2- methyl- 1,3- dioxolane	Pentanal	Hexanal	Styrene	p-xylene	Benzaldehyde	Octanal	Nonanal
1A	ND	885 ± 78	ND	ND	ND	ND	ND	ND	144 ± 16
2A	ND	964 ± 101	ND	21 ± 1	ND	ND	ND	ND	87 ± 8
3A	ND	650 ± 61	ND	272 ± 36	ND	ND	ND	120 ± 3	874 ± 44
5A	ND	563 ± 12	ND	32 ± 5	ND	ND	ND	65 ± 6	91 ± 22
6A	ND	513 ± 53	ND	17 ± 4	ND	ND	ND	31 ± 1	149 ± 11
7A	72 ± 1	995 ± 180	70 ± 7	63 ± 11	ND	ND	ND	44 ± 20	235 ± 16
8A	ND	777 ± 31	ND	ND	ND	ND	ND	57 ± 1	206 ± 4
9A	ND	996 ± 99	ND	ND	ND	ND	ND	ND	42 ± 3
12A	ND	977 ± 141	ND	ND	ND	ND	ND	ND	91 ± 4
10B	ND	213 ± 17	222 ± 13	11 ± 3	ND	ND	ND	ND	56 ± 13
13B	ND	563 ± 80	ND	ND	ND	ND	ND	ND	27 ± 2
4C	ND	258 ± 9	ND	29 ± 2	ND	ND	ND	ND	160 ± 9
7C	267 ± 45	248 ± 53	182 ± 13	123 ± 3	ND	ND	ND	40 ± 11	25 ± 5
2D	ND	467 ± 48	ND	63 ± 27	ND	ND	ND	ND	187 ± 28
4D	ND	369 ± 40	ND	216 ± 13	ND	ND	99 ± 5	53 ± 1	545 ± 35
6D	ND	387 ±17	ND	28 ± 3	35 ± 1	ND	ND	62 ± 9	235 ± 25
7D	150 ± 1	381 ± 9	75 ± 6	164 ± 25	ND	ND	ND	48 ± 3	297 ± 66
11D	ND	154 ± 10	189 ± 7	88 ± 5	ND	ND	ND	22 ± 1	112 ± 7
2E	ND	94 ± 2	94 ± 2	139 ± 11	ND	ND	ND	ND	23 ± 1
5E	ND	85 ± 10	310 ± 68	ND	ND	ND	ND	ND	33 ± 13
6E	ND	142 ± 25	104 ± 3	212 ± 42	14 ± 0.7	ND	ND	ND	171 ± 19
7E	915 ± 90	146 ± 23	100 ± 8	54 ± 5	ND	ND	ND	35 ± 2	14 ± 0
11E	ND	108 ± 6	114 ± 9	117 ± 4	ND	10 ± 0.3	ND	46 ± 2	272 ± 7
14E	ND	58 ± 1	ND	79 ± 5	ND	ND	ND	ND	38 ± 2

Samples named as:
A: 0% recycled PET
B: 15% recycled PET
C: 25% recycled PET
D: 50% recycled PET
E: 100 % recycled PET
Oifferent numbers correspond
to different PET mineral water
bottles suppliers.

- Most of the compounds present in the samples were aliphatic aldehydes.

- Benzene derivatives such as benzaldehyde, p-xylene and styrene were found in very few recycled samples

^a Mean value ± standard deviation (n=3)

ND: No detected

HS-GC-MS chromatogram of a spiked PET bottle sample (50 ng g^{-1})

1) Ethyl acetate

Conclusions

- 1. A novel non-targeted methodology based on HS-GC-MS and implying minimal sample preparation was developed to obtain the volatile fingerprint of virgin and recycled PET plastic bottles (containing different percentages of recycled plastic) from different suppliers.
- 2. The combination of chemometrics (OPLS-DA and PLS) with the data set obtained by HS-GC-MS methodology for PET samples has demonstrated to be a very useful tool to predict the percentage of recycled material in the PET bottle samples: AVOID FRAUDS.
- 3. Main contributors to the classification between virgin and recycled PET materials are 2-methyl-1,3-dioxolane which is present in higher amount in virgin PET bottles, and aliphatic aldehydes which are linked to secondary reactions occurring during recycling processes being, therefore, these compounds characteristics of recycled PET samples.
- 4. Seventeen VOCs were detected in the samples. Nine of them were quantified in the studied samples: ethyl acetate, 2-methyl-1,3-dioxolane, pentanal, hexanal, styrene, p-xylene, benzaldehyde, octanal and nonanal, being their concentrations ranging from 21 to 996 ng g⁻¹ which corresponded to hexanal and 2-methyl-1,3-dioxolane, respectively.

Thank you for your attention