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Abstract: Robot manipulators have played an enormous role in the industry during the twenty-one
century. Due to the advances in materials science, lightweight manipulators have emerged with low
energy consumption and positive economic aspect regardless of their complex mechanical model
and control techniques problems. This paper presents a dynamic model of a single link flexible robot
manipulator with a payload at its free end based on the Euler-Bernoulli beam theory with a complete
second-order deformation field that generates a complete second-order elastic rotation matrix. The
beam experiences an axial stretching, horizontal and vertical deflections, and a torsional deformation
ignoring the shear due to bending, warping due to torsion, and viscous air friction. The deformation
and its derivatives are assumed to be small. The application of the extended Hamilton principle while
taking into account the viscoelastic internal damping based on the Kelvin-Voigt model expressed
by the Rayleigh dissipation function yields both the boundary conditions and the coupled partial
differential equations of motion that can be decoupled when the manipulator rotates with a constant
angular velocity. Equations of motion solutions are still under research, as it is required to study the
behavior of flexible manipulators and develop novel ways and methods for controlling their complex
movements.

Keywords: flexible manipulator; Euler-Bernoulli beam; Viscoelasticity; Kelvin-Voigt model; Rayleigh
dissipation function; extended Hamilton principle; partial differential equations

1. Introduction

The focus of robotics research in the last decade has been on building lightweight
manipulators due to their low energy consumption despite their complex mechanical
models and control systems. In the literature, the kinematics of the Euler-Bernoulli beam is
usually approached by the assumed traditional deformation field that cannot allow having
an orthogonal elastic rotation matrix to the second-order. For this article, the deformations
and their partial derivatives are assumed to be small. The kinematic model described in
Section 2.1 is based on the complete second-order deformation field [1]. Section 2.2 presents
the dynamics model that includes the kinetic energy and potential energy of the system
that is composed of gravitational and strain potential energies due to gravity and elasticity.
Section 2.3 takes into account the Rayleigh dissipation function due to motor friction and
the viscoelastic internal damping based on the Kelvin-Voigt model. Section 2.4 gives the
motion equations using the extended Hamilton principle that yields four partial differential
equations satisfied by the deformation variables and seven boundary conditions.The final
Section 3 deals with the decoupling of partial differential equations in a particular case
which allows small simplifications of the equations.
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2. Mechanical Modelling

The system consists of a base subjected to an applied torque Tmot by a motor, a flexible
link modeled as an Euler-Bernoulli beam with a circular cross-section with radius R and
length L, and a payload with mass mp and inertia matrix Ip at the free end of the link.The
beam is subjected to an axial stretching u(x, t), a horizontal deflection v(x, t), a vertical
deflection w(x, t) and a torsional deformation φ(x, t).The beam deformations and their par-
tial derivatives are assumed to be small, shear due to bending, warping due to torsion, air
viscous friction are neglected.To simplify the notation u(x, t), v(x, t), w(x, t), φ(x, t), d

dt (.),
d

dx (.) are denoted by u, v, w, φ, ˙(.) and (.)′ respectively.

(a) Front view (b) Top view

Figure 1. Flexible beam with payload

2.1. Kinematics

Let R0 be an inertial frame with origin O0, R1 a frame attached to the motor with
origin O1 that coincides with O0 and Rdm a frame attached to the cross-section of mass
dm whose axes are parallel to those ofR1 before deformation and whose origin Odm is the
center of the cross-section that is at a distance x from O1 along the neutral axis of the link
before deformation. The rotation matrix ofR1 relative toR0 [2] is 0R1 = RZ0,θ .
The position of Odm relative toR1 expressed inR1 after deformation [1] expressed by:

1−−−−→O1Odm = [x + u− 1
2

∫ x

0
(v′2 + w′2)ds, v, w]T (1)

The rotation matrix ofRdm relative toR1 after deformation [1] is:

1Rdm =


1− 1

2 (v
′2 + w′2) −v′ + u′v′ − w′φ −w′ + u′w′ + v′φ

v′ − u′v′ 1− 1
2 (v
′2 + φ2) −φ− 1

2 v′w′

w′ − u′w′ φ− 1
2 v′w′ 1− 1

2 (w
′2 + φ2)

 (2)

1Rdm is verified to be orthogonal to the second-order of Taylor expansion in the deformation
variables. Let P be a point of the cross-section with (x,y,z) its coordinates relative toR1 before
deformation. The position of P relative toR1 expressed inR1 after deformation [2] is

1−−→O1P =1 −−−−→O1Odm + 1Rdm
dm−−−→OdmP

where dm−−−→OdmP = [0, y, z]T and 0−−→O0P = 0R1
1−−→O1P.

LetR2 be a frame attached to the free end of the link whose origin is O2 and obtained
from Rdm by replacing x by L (for example v(x,t) at x=L becomes v(L, t), shortened vL).
If the position of the center of mass C of the payload relative to R2 expressed in R2 is
2−−→O2C = [c, 0, 0]T ,then the position of C relative toR1 expressed inR1 is given by:
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1−−→O1C = [L + uL −
1
2

∫ L

0
(v′2 + w′2)ds + c

(
1− 1

2
(v′2L + w′2L )

)
, vL + c(v′L − u′Lv′L), wL + c(w′L − u′Lw′L)]

T (3)

Since 1−−→O1C = 1−−−→O1O2 +
1R2

2−−→O2C, and 1R2 is deduced from 1Rdm by replacing x by L,
hence 0−−→O0C = 0R1

1−−→O1C. The angular velocity of R1 relative to R0 expressed in R0 is
0−−→Ω1/0 = [0, 0, θ̇]T . The angular velocity ofRdm relative toR1 expressed inR1 [2] is found
from the following matrix

S = 1Ṙdm
1RT

dm =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


Hence

1−−−→Ωdm/1 = [ωx, ωy, ωz]
T

The Taylor expansion of 1−−−→Ωdm/1 to the second-order in the deformation variables and
after simplification gives:

ωx ≈ φ̇ +
1
2
(v′ẇ′ − v̇′w′) ωy ≈ −ẇ′ + u̇′w′ + u′ẇ′ + v′φ̇ ωz ≈ v̇′ − u̇′v′ − u′v̇′ + φ̇w′ (4)

Hence the angular velocity ofRdm relative toR0 expressed inR0 is given by:

0−−−→Ωdm/0 = 0−−→Ω1/0 +
0R1

1−−−→Ωdm/1

The gravity vector is represented inR0 by: 0−→g = [0, 0,−g]T .

2.2. Dynamics
2.2.1. Kinetic Energy

The kinetic energy T of the system is the sum of kinetic energies: TB of the base, Tl of
the flexible link and Tp of the payload. Where TB = 1

2 IB θ̇2, with IB is the base inertia about
the Z0 axis. The kinetic energy of the link [3] is given by:

Tl =
1
2

∫∫∫
V

v(P/0)2dm =
1
2

∫ R

z=−R

∫ √R2−z2

y=−
√

R2−z2

∫ L

x=0
ρ v(P/0)2dxdydz (5)

ρ is the mass density of the beam that is considered homogeneous. Since the beam
cross-section is circular, y2 + z2 = r2, r ∈ [0, R] and the last triple integral is written [4] as:

Tl =
1
2

∫ R

r=0

∫ 2π

γ=0

∫ L

x=0
ρv(P/0)2rdrdγdx (6)

where y = rcos(γ) , z = rsin(γ). Therefore the kinetic energy of the link linearized to the
second-order and after simplifications is given by:

Tl =
ρ

2

{
πR2

∫ L

0
(u̇2 + v̇2 + ẇ2)dx +

1
4

πR4
∫ L

0
(v̇′2 + ẇ′2 + 2φ̇2)dx + θ̇2

[
1
3

πR2 L3 +
1
4

πR4 L + πR2
∫ L

0
(u2 + v2)dx +

1
4

πR4
∫ L

0
w′2dx + 2πR2

∫ L

0
xudx

− 1
2

πR2
∫ L

0
(L2 − x2)(v′2 + w′2)dx

]
+ 2θ̇

[
πR2

∫ L

0
xv̇dx− 1

4
πR4

∫ L

0
(−v̇′ + u̇′v′ + u′ v̇′ − 2w′ φ̇)dx + πR2

∫ L

0
(uv̇− u̇v)dx

]} (7)

The kinetic energy of the payload [5] is expressed by :

Tp =
1
2
−−→
Ωp/0.Ip

−−→
Ωp/0 +

1
2

mpv(C/0)2
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where Ip =

I1 I4 I5
I4 I2 I6
I5 I6 I3

 and
−−→
Ωp/0 is obtained from

−−−→
Ωdm/0 by replacing x by L, hence the

expression of Tp linearized to the second-order in the deformation variables is:

Tp =
1
2

[
I1

(
φ̇2

Lcos(θ)2 + ẇ′2L sin(θ)2 + 2φ̇Lẇ′Lcos(θ)sin(θ)
)
+ I2

(
φ̇2

Lsin(θ)2 + ẇ′2L cos(θ)2 − 2φ̇Lẇ′Lcos(θ)sin(θ)
)
+ I3

(
θ̇2 + v̇′2L + 2θ̇(v̇′L − u̇′L v′L − u′L v̇′L + φ̇Lw′L )

)

+ 2I4

(
(φ̇2

L − ẇ′2L )cos(θ)sin(θ)− φ̇Lẇ′L
(
2cos(θ)2 − 1

))
+ 2I5

(
θ̇

((
φ̇L +

1
2
(v′Lẇ′L − v̇′Lw′L )

)
cos(θ)− (−ẇ′L + u̇′Lw′L + u′Lẇ′L + v′L φ̇L ) sin(θ)

)
+ v̇′L φ̇Lcos(θ) + v̇′Lẇ′Lsin(θ)

)

+ 2I6

(
θ̇

((
φ̇L +

1
2
(v′Lẇ′L − v̇′Lw′L )

)
sin(θ) + (−ẇ′L + u̇′Lw′L + u′Lẇ′L + v′L φ̇L ) cos(θ)

)
+ v̇′L φ̇Lsin(θ)− v̇′L ẇ′Lcos(θ)

)]
+

1
2

mp

[
u̇2

L + v̇2
L + ẇ2

L + c2(v̇′2L + ẇ′2L )

+ 2c(v̇L v̇′L + ẇL ẇ′L ) + θ̇2
(

L2 + u2
L + v2

L + c2(1− w′2L ) + 2L
[
uL −

1
2

∫ L

0
(v′2 + w′2)ds + c

(
1− 1

2
(v′2L + w′2L )

)]
+ 2c(uL + vL v′L )− c

∫ L

0
(v′2 + w′2)ds

)

+ 2θ̇

((
L + c

)(
v̇L + c(v̇′L − u̇′Lv′L − u′L v̇′L )

)
+ uL (v̇L + cv̇′L )− u̇L (vL + cv′L )

)]

(8)

2.2.2. Potential Energy

The potential energy V of the system is the sum of potential energies:VB of the base ,
Vl of the flexible link and Vp of the payload. The potential energy VB of the base which is
its gravitational potential energy equals a constant CB because its mass center is fixed in
the inertial frameR0 whose origin level is taken as reference VB = CB.The potential energy
of the link is the sum of its gravitational potential energy and its strain energy:

Vl = Vgravit + Vstr (9)

Vgravit is the gravitational potential energy of the link [5] that equals:

Vgravit = −
∫ R

r=0

∫ 2π

γ=0

∫ L

x=0

−→g −−→O0Pρrdrdγdx = ρgπR2
∫ L

x=0
wdx (10)

Vstr is the strain energy of the link [6] and it is the sum of strain energies due to different
strains:

Vstr = Vu + Vv + Vw + Vφ (11)

The expressions of different strain energies [7] are:

Vu =
1
2

∫∫∫
V

Eu′2dV =
1
2

πR2E
∫ L

0
u′2dx Vv =

1
2

∫∫∫
V

Ev′′2y2dV =
1
8

πR4E
∫ L

0
v′′2dx Vw =

1
2

∫∫∫
V

Ew′′2z2dV =
1
8

πR4E
∫ L

0
w′′2dx

Vφ =
1
2

∫∫∫
V

Gr2φ′2dV =
1
4

πR4G
∫ L

0
φ′2dx

where E and G are the young modulus and the shear modulus of the beam material
respectively.The potential energy of the payload is its gravitational potential energy that
equals:

Vp = −mp
−→g −−→O0C = mpg

(
wL + c(w′L − u′Lw′L)

)
(12)

2.3. Rayleigh Dissipation Function

Rayleigh dissipation function R expresses the energy dissipated due to motor friction
and internal damping effect of each deformation (u, v, w, φ), the dissipation is based on the
Kelvin-Voigt model [8], and can be expressed [9] as follows:

R = Rmot +Ru +Rv +Rw +Rφ (13)

where

Ru =
1
2

∫∫∫
V

σd
u ε̇udV =

1
2

πR2CX

∫ L

x=0
u̇′2dx Rv =

1
2

∫∫∫
V

σd
v ε̇vdV =

1
8

πR4CY

∫ L

x=0
v̇′′2dx Rw =

1
2

∫∫∫
V

σd
w ε̇wdV =

1
8

πR4CZ

∫ L

x=0
ẇ′′2dx

Rφ =
1
2

∫∫∫
V

τd
φ γ̇φdV =

1
4

πR4CΦ

∫ L

x=0
φ̇′2dx Rmot =

1
2

bm θ̇2

Since
|εu|= |u′| , σd

u = CX ε̇u, |εv|= |yv′′|= |rcos(γ)v′′| , σd
v = CY ε̇v,
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|εw|= |zw′′|= |rsin(γ)w′′| , σd
w = CZ ε̇w, |γφ|= |rφ′| and τd

φ = CΦγ̇φ.

where CX ,CY,CZ are the internal damping coefficients along the x axis, the y axis, and the
z axis respectively, CΦ is the torsional internal damping coefficient, and bm is the motor
viscous friction coefficient.

2.4. Motion Equations

The extended Hamilton principle [10] is used to get motion equations and bound-
ary conditions: 0 =

∫ t2
t1
(δT − δV + Tmot δθ + δζ)dt where δζ is the variation of work

done by the dissipative forces, its expression is derived from Rayleigh dissipation func-
tion as follows: If the expression of Rayleigh dissipation function is given by: R =
1
2

∫∫∫
V σd ε̇ dV, then the expression of work variation δζ done by dissipative forces is:

δζ = −
∫∫∫

V σd δε dV . Hence using the fact that the beam is clamped at the joint i.e.
u(0, t) = v(0, t) = w(0, t) = φ(0, t) = 0, v′(0, t) = w′(0, t) = 0
The dynamic equation associated with θ is given by:

Tmot = bm θ̇ +
1
2

IB θ̈ −
[

I1

(
cos(θ)sin(θ)(ẇ′2L − φ̇2

L ) + φ̇Lẇ′L (2cos(θ)2 − 1)
)
+ I2

(
cos(θ)sin(θ)(φ̇2

L − ẇ′2L )− φ̇Lẇ′L (2cos(θ)2 − 1)
)
+

I4

(
(φ̇2

L − ẇ′2L )(2cos(θ)2 − 1) + 4φ̇Lẇ′Lcos(θ)sin(θ)
)
+ θ̇
[
(φ̇L +

1
2
(v′Lẇ′L − v̇′Lw′L ))(−I5sin(θ) + I6cos(θ)) + (−ẇ′L + u̇′Lw′L + u′Lẇ′L + v′L φ̇L )(−I5cos(θ)− I6sin(θ))

]
+ v̇′L

[
φ̇L
(
− I5sin(θ) + I6cos(θ)

)
+ ẇ′L

(
I5cos(θ) + I6sin(θ)

)]
− ∂

∂t

(
I3
(
θ̇ + v̇′L − u̇′Lv′L − u′L v̇′L + φ̇Lw′L

)
+ (φ̇L +

1
2
(v′Lẇ′L − v̇′Lw′L ))(I5cos(θ) + I6sin(θ))

+ (−ẇ′L + u̇′Lw′L + u′L ẇ′L + v′L φ̇L )(−I5sin(θ) + I6cos(θ)) + mp

{
θ̇

(
L2 + u2

L + v2
L + c2(1− w′2L ) + 2L

[
uL −

1
2

∫ L

0
(v′2 + w′2)ds + c

(
1− 1

2
(v′2L + w′2L )

)]
+ 2c(uL + vLv′L )

− c
∫ L

0
(v′2 + w′2)ds

)
+
(

L + c
)(

v̇L + c(v̇′L − u̇′Lv′L − u′L v̇′L )
)
+ uL (v̇L + cv̇′L )− u̇L (vL + cv′L )

})]
+

ρ

2

{
∂

∂t

(
2θ̇

[
1
3

πR2 L3 +
1
4

πR4 L + πR2
∫ L

0
(u2 + v2)dx

+
1
4

πR4
∫ L

0
w′2dx + 2πR2

∫ L

0
xudx− 1

2
πR2

∫ L

0
(L2 − x2)(v′2 + w′2)dx

])
+ 2

∂

∂t

(
πR2

∫ L

0
xv̇dx− 1

4
πR4

∫ L

0
(−v̇′ + u̇′v′ + u′ v̇′ − 2w′ φ̇)dx + πR2

∫ L

0
(uv̇− u̇v)dx

)}

(14)

? The equation satisfied by u:

0 =
ρ

2

(
− 2πR2 ü + 2πR2 θ̇2u + 2πR2 θ̇2x + πR2(4θ̇v̇ + 2θ̈v)− 1

2
πR4 θ̈v′′

)
+ πR2CX u̇′′ + πR2Eu′′ (15)

? The equation satisfied by v:

0 =
ρ

2

(
− 2πR2 v̈ +

1
2

πR4 v̈′′ + 2πR2 θ̇2v− πR2 θ̇2(2xv′ + (x2 − L2)v′′)− πR2(4θ̇u̇ + 2θ̈u + 2xθ̈)− 1
2

πR4 θ̈u′′
)

− 1
4

πR4CY v̇′′′′ − 1
4

πR4Ev′′′′ + mp θ̇2(L + c)v′′
(16)

? The equation satisfied by w:

0 =
ρ

2

(
− 2πR2ẅ +

1
2

πR4ẅ′′ − 1
2

πR4 θ̇2w′′ − πR2 θ̇2(2xw′ + (x2 − L2)w′′)− πR4 θ̇φ̇′
)
− 1

4
πR4CZẇ′′′′ + mp θ̇2(L + c)w′′

− 1
4

πR4Ew′′′′ − ρgπR2

(17)

? The equation satisfied by φ:

0 =
ρ

2

(
− πR4φ̈− πR4(θ̈w′ + θ̇ẇ′)

)
+

1
2

πR4CΦφ̇′′ +
1
2

πR4Gφ′′ (18)

? Since the free end of the beam is at x = L, the following quantities δuL, δu′L, δvL, δv′L,
δwL, δw′L and δφL are arbitrary, therefore the final equations of boundary conditions are:

0 = −πR2CX u̇′L +
ρ

4
πRθ̈v′L − πR2 Eu′L −

∂

∂t

[
mp

(
u̇L − θ̇(vL + cv′L )

)]
+ mp

[
θ̇2(uL + L + c) + θ̇(v̇L + cv̇′L )

]
(19)

0 = − ∂

∂t

[
− I3 θ̇v′L + w′L

(
− I5 θ̇sin(θ) + I6 θ̇cos(θ)

)
−mp θ̇c(L + c)v′L

]
− I3 θ̇v̇′L − I5 θ̇ẇ′Lsin(θ) + I6 θ̇cos(θ)ẇ′L −mp θ̇c(L + c)v̇′L + mp gcw′L (20)

0 =
1
4

πR4CY v̇′′′L −
ρ

4
πR4 v̈′L +

ρ

4
πR4 θ̈(u′L − 1) +

1
4

πR4 Ev′′′L −
∂

∂t

[
mp

(
v̇L + cv̇′L + θ̇(L + c + uL )

)]
+ mp

(
θ̇2(vL + cv′L )− θ̇u̇L − θ̇2(L + c)v′L

)
(21)
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0 = − 1
4

πR4CY v̇′′L −
1
4

πR4 Ev′′L −
∂

∂t

[
I3

(
v̇′L + θ̇(1− u′L )

)
+ I5

(
− 1

2
θ̇w′Lcos(θ) + φ̇Lcos(θ) + ẇ′Lsin(θ)

)
+ I6

(
− 1

2
θ̇w′L sin(θ) + φ̇Lsin(θ)− ẇ′L cos(θ)

)

+ mp

(
c2 v̇′L + cv̇L + θ̇c(L + c)(1− u′L ) + θ̇cuL

)]
− I3 θ̇u̇′L + I5

(
1
2

θ̇ẇ′L cos(θ)− θ̇φ̇Lsin(θ)
)
+ I6

(
1
2

θ̇ẇ′Lsin(θ) + θ̇φ̇Lcos(θ)
)
+ mp

(
θ̇2(−Lcv′L + cvL )− θ̇c(L + c)u̇′L − θ̇cu̇L

) (22)

0 =
1
4

πR4CZ ẇ′′′L +
1
4

πR4 Ew′′′L −mp g− ρ

4
πR4 ẅ′L +

ρ

4
πR4 θ̇2w′L +

ρ

2
πR4 θ̇φ̇L −mp (ẅL + cẅ′L )−mp θ̇2(L + c)w′L (23)

0 = − 1
4

πR4CZ ẇ′′L −
1
4

πR4 Ew′′L −mp gc(1− u′L )−
∂

∂t

[
I1

(
sin(θ)2 ẇ′L + cos(θ)sin(θ)φ̇L

)
+ I2

(
cos(θ)2 ẇ′L − cos(θ)sin(θ)φ̇L

)
+ I4

(
− 2ẇ′Lcos(θ)sin(θ)− φ̇L (2cos(θ)2 − 1)

)

+ I5

(
1
2

θ̇v′Lcos(θ) + sin(θ)
(
v̇′L − θ̇(u′L − 1)

))
+ I6

(
1
2

θ̇v′Lsin(θ) + cos(θ)
(
− v̇′L + θ̇(u′L − 1)

))
+ mp

(
c2 ẇ′L + cẇL

)]
+ I3 θ̇φ̇L + I5

(
− 1

2
θ̇v̇′Lcos(θ)− θ̇u̇′L sin(θ)

)

+ I6

(
− 1

2
θ̇v̇′Lsin(θ) + θ̇u̇′L cos(θ)

)
−mp θ̇2c(L + c)w′L

(24)

0 = − 1
2

πR4CΦ φ̇′L −
1
2

πR4Gφ′L −
∂

∂t

[
I1

(
cos(θ)2 φ̇L + cos(θ)sin(θ)ẇ′L

)
+ I2

(
sin(θ)2 φ̇L − cos(θ)sin(θ)ẇ′L

)
+ I4

(
2cos(θ)sin(θ)φ̇L − ẇ′L (2cos(θ)2 − 1)

)

+ I5

(
(θ̇ + v̇′L )cos(θ)− θ̇v′Lsin(θ)

)
+ I6

(
(θ̇ + v̇′L )sin(θ) + θ̇v′Lcos(θ)

)] (25)

u, v, φ must also satisfy these conditions: u(x, 0) = limt→∞ u(x, t) = 0,
v(x, 0) = limt→∞ v(x, t) = 0, φ(x, 0) = limt→∞ φ(x, t) = 0 and w must satisfy

w(x, 0) = limt→∞ w(x, t) = w̃(x) whose expression [11] is given by: w̃′(x) = tan
(

x(2a−x)
2b

)
,

since w̃(0) = 0, then w̃(x) =
∫ x

0 tan
(

l(2a−l)
2b

)
dl, where a = L − δ, b = EI

F , δ is the

foreshortening term due to the bending of the beam, whose expression[12] is given by:
δ = − 1

2

∫ L
0 w̃′2(x)dx, F is the weight of the payload that equals mpg, and I is the second

moment of area of the beam that have a circular cross-section and equals: I =
∫∫

y2dydz = πR4

4 .

3. Discussion

Considering the reference of angle θ is zero when the manipulator is at rest (t = 0) and
the angular velocity is constant (θ̇ = Ω), then θ and θ̇ are replaced by Ωt and Ω respectively
in the equations of the previous section. The Equation (16) yields u̇ = L1(v), taking the time
derivative of the Equation (15) and using the last expression yields L2(v) = 0 .The Equa-
tion (17) yields φ̇

′
= L3(w) + c ,taking both time and spatial derivatives of the Equation (18)

and using the last expression yields L4(w) = 0, where c is a constant and L1, L2, L3, L4 are
linear operators,hence the motions equations are decoupled but the boundary conditions
are still coupled. The goal of future work is to develop a numerical method for solving
previous partial differential equations with coupled boundary conditions while ensuring
the stability of the solutions. Once the solutions are found, the mechanical modeling will
be generalized to flexible manipulators with serial links where the payload attached to
each link is the rest of the chain.

4. Conclusions

Modeling the single-link flexible manipulator as an Euler-Bernoulli beam with a
payload at its free end subjected to small deformations, and using a rotation matrix orthog-
onal to the second-order of Taylor expansion in the deformations variables, the extended
Hamilton principle is applied to get both the motion equations and boundary conditions.
The motion partial differential equations are decoupled when the angular velocity is con-
stant,once the solutions are available, it will help to study more accurately the movements
of flexible manipulators and to find new techniques for robust control of such systems.
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