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Abstract: Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease
that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography
which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could
be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS
without compromising their everyday routine. Since snoring is usually linked to OSAHS, develop-
ing a snore detector is appealing as an enabling technology for screening OSAHS at home using
ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context,
we developed a snore detection tool and herein present our approach and selection of specific sound
features that discriminate snoring vs. environmental sounds, as well as the performance of the pro-
posed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool
and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound
excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone
tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS
screening applications in future developments.

Keywords: obstructive sleep apnea hypopnea syndrome; apnea screening; snoring detection; ma-
chine learning; neural networks.

1. Introduction

Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) is a chronic condition held
responsible for a number of well-documented effects on patients” health. It is linked to
increased cardiovascular morbidity and mortality, including sudden heart death [1],
while an estimated 4% and 2% of the male and female population respectively suffer from
OSAHS. Interestingly enough, an estimated 85% of patients remain undiagnosed [2]. This
underestimation poses an increased risk for individuals and society as a whole and is
mainly due to polysomnography being the only method for OSAHS diagnosis currently
trusted by doctors. Polysomnography is a time and resource-consuming procedure that
monitors sleep with a multitude of specialized sensors and equipment and is performed
in dedicated sleep laboratories or hospital care clinics. As such, most of the suffering pop-
ulation remains unscreened and, hence, undiagnosed.

The APNEA research project aims at accurately and cost-efficiently screening pa-
tients at home, using sound recordings via the users’ smartphone during sleep [3]. In an
ongoing measurements campaign, the APNEA project is collecting polysomnography
data together with time-synchronized and high quality tracheal and ambient microphone
recordings. The data are collected during sleep studies that are performed by project part-
ners following the relevant medical protocols, and are of a duration of about 8-hour each.
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Insofar, the acquired database consists of more than 200 complete polysomnography stud-
ies and our respective findings are reported in [4]. In parallel, and inspired by literature
findings linking snoring to OSAHS episodes (e.g., see Refs. [5-7]), APNEA aims at devel-
oping a Real-Time Snore Detector (RTSD) in order to use it for pre-screening of micro-
phone recordings at home. The RTSD is intended to be either used as a stand-alone tool
for apnea screening or integrated within more sophisticated apnea detection solutions by
allowing to the latter to focus on timeslots of increased OSAHS probability.

As long as snore classifiers are concerned, we have focused on neural networks. They
have been used in the literature for snoring detection with substantial classification accu-
racy, usually in the order of 90 % or larger [8-10]. However, neural networks are usually
trained using a relatively small dataset or a fragment of whole night sleep sound record-
ings. On the contrary, RTSDs — neural based or other- are meant to be employed in much
larger datasets (see whole night recordings of multiple patients), while larger datasets are
typically related to reduced accuracy performance. In this respect, our contribution lies in
(i) our approach and findings about which sound features are more promising and should
be used for snoring classification, (ii) the training of a successful neural network for snor-
ing detection with superior classification accuracy despite been trained using a much
larger dataset compared to those used in the literature,~ (iii) the development of a RTSD
tool, and (iv) the availability of a large body of annotated snoring sound excerpts (upon
which the neural network training was implemented) together with an extremely large
body of snoring sound excerpts that correspond to the output of the RTSD upon a large
subset of whole-night sleep sound recordings. We present the architecture of the proposed
classification tool in section 2, while we report our findings regarding feature selection in
sub-section 3.1. Numerical results on the performance of the proposed neural network
and RTSD are demonstrated in sub-section 3.2 and section 4 concludes the paper and in-
cludes a discussion regarding future work for RTSD improvement.

2. Architecture of the proposed classification tool and real-time snore detector

The architecture of the proposed classification tool is based on a neural network clas-
sifier and is illustrated in Fig. 1. Sound excerpts are used as input to the classifier. Each
sound excerpt is de-noised using wavelet filtering and then is normalized with respect to
its average energy. Selected features are calculated for each sound excerpt (sampled at 48
kHz, 24-bit), while a Gaussian Mixture Model (GMM) is also calculated for the Time-Fre-
quency (TF) features. Finally, a neural-network classifier is employed in order to infer
whether the input sound excerpt is a snore or not. Keeping in mind the big picture of a
RTSD that will ultimately run in smartphones at home, we selected the implementation
of a shallow neural network classifier, with one hidden layer. Given that we experimented
with different options for the implemented features, the number of nodes of the network
hidden layer was equal to (rounded) 2.5 times the number of nodes of the input layer. A
detailed discussion on the features that we implemented and used for this work is pro-
vided in Section 3, while details on the architecture of the neural network per se as well
as the implementation of wavelet de-noising, energy normalization, GMM and neural net-
work training are provided in our previous work [11].

Furthermore, the architecture of the proposed RTSD is illustrated in Figure 2. The
RTSD is designed to be used in real-time but its operation is herein emulated using whole-
night sleep recordings as its input. As such, the input sound recording is parsed with a
sliding window of duration 6 s and a sliding step of 2 s (i.e., there is an overlap of around
66.7 % between adjacent windows). The window duration of 6 s was selected because we
have observed that a typical breathe-in-breathe-out cycle is about 4 s, so we opted for a
guard interval of 1 s before and after. The sliding length is then equal to the sum of these
guard intervals. The sound within each window is captured and the proposed classifica-
tion tool of Figure 1 is employed in order to infer whether the specific time window cor-
responds to snoring or not. If it is classified as snoring, then we record the sound excerpt
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within the specific window to a separate .wav file for further processing or else we pro-
ceed to the next time window according to the predefined time-step. The procedure is
repeated until the end of the whole-night sound recording or, in a real-life scenario, until
the user aborts the application in her/his smartphone.

Features T
|STARTE-——' Read input | Wavelet | Energy | calculation + | | Neural-network- . END
| | ] sound excerpt | de-noising normalization GMM of TF based classification

features

.| -
Figure 1. Architecture of the proposed classification tool and neural network.
. . Capture sound .-
] Read input Window start = -2 s Slide window TpLire soun Employ classification
START sound recording Window end =4 s limits by 2 s cach | excerpt within tool (see Fig. 1)
E g mdow en s mits by 2 s cach . window limits g.
| vES }
A \‘\\ 4 \
I. yd “Are there ""\ Write s { excernt P bmuplc h .
END -~ more signal > “?Wm“¢¥?gl classified >
“_windows?, | to aseparate .wav file \\ as snoring
NO YES .
\r.-' ., .y

T/NO
Figure 2. Architecture of the proposed Real-Time Snore Detector.
3. Numerical results

3.1. Features selection and performance of the proposed neural network snore detection tool

In the literature, sound classification is performed using carefully selected features
that are broadly categorized in time-domain (such as zero-crossing-rate (ZCR), energy,
volume, etc.) and frequency-domain features (pitch, bandwidth, mel-frequency cepstral
coefficients (MFCCs), etc.). However, such “static” features fail to capture the time evolu-
tion of the signal. Time-frequency (TF) features are therefore proposed and consist in craft-
ing a sequence of static features calculated on a time window that is sliding over the entire
sound signal. With such an approach, the temporal evolution of the signal is captured,
however, the resulting feature space is usually huge and therefore needs to be reduced by
the means of, e.g., a Gaussian mixture modeling in the case of shallow neural networks
[11-12] (or repeated convolutional layers in the case of convolutional or deep neural net-
works).

Most of the aforementioned sound features are also used for snore detection in the
literature [13]. On top of these, features that are used for snore detection include low-level
descriptors and functional-based features that are reported in [14], positive/negative am-
plitude ratio, sampling entropy and 500 Hz power ratio reported in [15], local dual octat
pattern reported in [16], and many more. Nonetheless, there is not yet a clear consensus
on what should be considered an appropriate feature selection when it comes to snore
detection in whole night sleep studies [13]. In this respect, we performed a preliminary
study about selecting a set of well-performing sound features.

The first features subset that we opted to compare consists of scalar features includ-
ing (i) the ZCR, pitch, bandwidth, volume and intensity of the signal, (ii) a set of entropy
metrics, specifically the Shannon, Tsallis, wavelet and permutation entropy, and (iii) a few
statistical metrics, namely the median, average, variance, skewness, kurtosis of the signal
amplitude. The second features’ subset includes the MFCCs of the sound signal; more
specifically, 13 MFCCs are calculated over the frequency range between 20 Hz and 6 kHz
of the recorded signal. Implementation details for scalar features and MFCCs are provided
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in [11-12], while both are calculated over the entire signal portion that corresponds to the
relative position of the sliding window described in Section 2.

Furthermore, inspired by studies reporting that snoring frequencies are mostly cen-
tered on specific and narrow ranges [17-18], we developed a modified spectrogram of the
input signal to be used as a sound feature suitable for snore detection. More specifically,
we calculate the spectrogram of each sliding window; each sound excerpt is down-
sammpled to 12 kHz, hence the resulting spectrogram ranges from 0 up to 6 kHz. Then,
we calculate the average spectral coefficients in adjacent, non-overlapping windows of
length 100 Hz each, resulting to the so-called Modified Spectral Coefficients (MSC). Fi-
nally, we extract the normalized MSC values in order to capture the energy concentration
within specific frequency ranges. As an example, Figure 3 compares the normalized MSC
between a snoring and a non-snoring sound excerpt. In this case, snoring sound energy
exhibits a peak at around 170 Hz that complies with the snoring frequencies reported in
[17]. On the contrary, the non-snoring excerpt exhibits a smoother distribution of energy
vs. frequency. Following multiple similar by-visual-inspection comparisons, we consid-
ered that the normalized MSC can be successful in discriminating snoring events and we
herein report numerical results that justify this approach.
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Figure 3. Modified spectral coefficients for a snoring and a non-snoring sound excerpt (solid and
dash-dotted curve, respectively).

Then, in order to infer about which combination of the implemented features pro-
vides the best accuracy with respect to snoring classification, we executed multiple train-
ing sessions of the proposed neural network using different features and feature combi-
nations. More specifically, we selected fifty different whole-night sound recordings from
fifty different patients. For each one of them, we manually selected and isolated fifty snor-
ing sound excerpts and fifty non-snoring sound excerpts, of duration 6 s each. This results
to a snoring and non-snoring database of 2500 + 2500 sound excerpts respectively (a total
of 5000 excerpts), with a total duration of about 30000 s (15000 s of snoring and 15000 s of
non-snoring); this database of manually annotated sound excerpts is freely available upon
request and the interested reader is referred to the Data Availability section below.

We then selected 70 % of this dataset for network training and the remaining 30 %
for testing. The resulting classification accuracy of the test set vs. selected features combi-
nations is tabulated in Tables I and II. Classification accuracy is defined as the ratio of
correct classification events (snoring excerpt classified as snoring plus non-snoring
excerpt classified as non-snoring) vs. the total number of classification attempts (which is
equal to the number of available excerpts, i.e., 5000 sound excerpts). According to Table I,
the normalized MSC exhibit better accuracy compared to MFCC or the set of scalar fea-
tures. On the other hand, the normalized MSC exhibit similar accuracy when combined
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with either MFCC or the set of scalar features. Given that scalar features are computation-
ally less intensive than MFCC to calculate, and that the proposed tool is envisioned to be
used in portable devices, we selected the combination of normalized MSC plus scalar fea-
tures to be used from now on in our experiments.

Table 1. Test set classification accuracy per feature class.

Scalar features MECC Normalized MSC
93.4 % 95.7 % 97.7 %

Table 2. Test set classification accuracy per feature classes’ combination.

Scalar features MEFCC Normalized MSC
Scalar features - 96.0 % 98.6 %
MEFCC - - 98.7 %
Normalized MSC - - -
All feature classes 97.3 %

Furthermore, the Precision and Recall of the selected combination of normalized MSC
and scalar features are calculated. Precision corresponds to the proportion of positive
identifications that was actually correct and is calculated as the ratio of true positives vs.
the sum of true positives plus false positives. Recall corresponds to the proportion of ac-
tual positives that were identified as such and is calculated as the ratio of true positives
vs. the sum of true positives plus false negatives. For the aforementioned features combi-
nation and test set, the resulting precision is equal to 99.59 % while the recall is equal to
98.32 %. Taking into account these performance metrics together with the reported overall
accuracy of 98.6 %, we consider that the proposed classification tool is eligible to be used
as a building block of a RTSD.

3.2. Application of the real-time snore detector

Following the training and testing of the proposed classification tool, we employed
it within the proposed RTSD scheme illustrated by Figure 2. Then, we selected a set of
twenty-five whole-night sound recordings and applied the RTSD upon them. The total
duration of the whole-night recordings that were employed is equal to 51 hours, 45
minutes and 13 seconds. Among these, a total of 12090 different sound excerpts of dura-
tion 6 s each are classified as snoring by the RTSD, corresponding to a total duration of 20
hours and 9 minutes. These sound excerpts are freely available to the interested reader
upon request (please see the Data Availability section below).

4. Conclusions and future work

We report herein a snoring classification tool with substantial performance (esti-
mated accuracy equal to 98.6 %), as well as the availability of a small dataset of annotated
snoring and non-snoring excerpts together with a large dataset of non-annotated excerpts
classified as snoring. In the immediate future, we intend to fully annotate the latter and
offer a large, freely available database of annotated snoring excerpts. We also intend to
use this full annotation in order to train a cascaded neural network that will have as input
only the positive output of the classification tool proposed herein, as shown in Figure 4.
The cascaded neural network will be trained with the aim of discriminating between true
and false positives, thus providing a new classification output that is expected to be much
more accurate than that of the first neural network alone.
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Figure 4. Architecture of a cascaded neural-network classification tool.
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