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Abstract: Sleep apnea is a serious disorder where breathing stops frequently during sleep. Changes 

in brain activities that occur during apnea can be detected with an electroencephalogram (EEG). 

Although accurate detection of apnea events is very important, there is currently no algorithm that 

can efficiently measure the onset and end of apnea events based only on electroencephalogram 

signals. The number and duration of apnea events are used to calculate apnea-hypopnea index 

(AHI) and mean apnea-hypopnea duration (MAD), that are indicators of obstructive sleep apnea 

severity. Previous apnea detection algorithms usually focus on the classification of apnea patients 

and not specific apnea events, or perform a frame-by-frame analysis and classify each frame based 

on the global characteristics of the frame, instead of locating the onsets and ends of apnea events. 

Thus, the clinical significance of EEG signals for apnea detection is limited to sleep staging. The 

purpose of this study is to propose a method for sleep apnea event detection and event duration 

evaluation using Convolutional Recurrent Neural Networks, based only on EEG signals. Reference 

and estimated AHI are strongly correlated (r=0.88, p<0.001), whereas the sensitivity and positive 

predicted value for the individual events detection is 0.73 and 0.78, respectively. Reference and es-

timated MAD values are very highly correlated (r=0.91, p<0.001), and the absolute error between 

them is 2.05 ± 1.66 s. The proposed method has high accuracy in detecting individual apnea events 

from EEG signals, especially in severe apnea cases. 
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1. Introduction 

Obstructive sleep apnea (OSA) is a sleep breathing disorder that is characterized by 

frequent cessations in breathing or reductions in breath amplitude [1]. Sleep apnea pa-

tients experience fragmented sleep and difficulty concentrating during the day that re-

duces quality-of-life and increases the risk of car accidents, while cardiovascular system 

strain due to low levels of blood oxygen is linked to cardiac diseases and reduced life 

expectancy [2,3]. The gold standard for diagnosing sleep-related breathing disorders is 

polysomnography that is a sleep study performed at a sleep center, which collects and 

records many physiologic parameters during sleep, including electroencephalogram, 

electrocardiogram, respiratory effort and blood oxygen levels [4]. The diagnosis of the 

disorder currently depends on the apnea-hypopnea index (AHI) that is the number of 

annotated sleep apnea and hypopnea events per hour of sleep. Based on the AHI, the 

severity of OSA is classified as follows: severe, where AHI is greater than 30, moderate, 

where AHI is between 15 and 30, mild, where AHI is between 5 and 15 and normal 

where there are less than 5 events per hour of sleep. In addition to AHI, mean ap-
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nea-hypopnea duration (MAD) has been proposed lately as an indicator of the OSA se-

verity [5,6].  

Polysomnography is an inconvenient and costly process and many researchers have 

investigated methods for apnea detection based on single biological signals, such as the 

electrocardiogram [7,8], oxygen saturation [9], airflow [10], thoracic movement [11] and 

EEG. EEG detects electrical activity in the brain using electrodes attached to the scalp 

[12,13]. It has been successfully used for automatic sleep staging [14] and there are many 

efforts to use it also for sleep apnea severity estimation. Many of the reported methods 

consider classification between apnea and healthy subjects [15,16], while the rest try to 

discriminate apnea and non-apnea events using a frame-by-frame analysis, where frame 

duration is usually 30 s [17,18]. In frame-by-frame analysis the whole duration of a test 

frame is considered for feature extraction, which is not clinically meaningful for AHI es-

timation, since a frame may contain a partial apnea event or more than one apnea events.  

This paper proposes the development of an apnea event detection model that de-

pends only on EEG signals and detects individual events and their duration.  

2. Materials and Methods  

2.1. PSG data acquisition 

The database used in this study consists of PSG data obtained at the Sismanoglio – 

Amalia Fleming General Hospital of Athens [19]. The study consists of 234 PSG exami-

nations that were performed for the diagnosis of sleep-disordered breathing between 

April 2019 and November 2020. 174 cases were used to develop the neural network and 

the remaining 60 cases were used for testing. Of the 234 patients, 176 (75%) were male. 

The mean age of the patients was 57 years, the mean AHI was 57.93 events/h, and the 

mean MAD was 18.6 s. Overall 2 patients were normal, 6 patients had mild OSA, 29 pa-

tients had moderate OSA and 197 patients had severe OSA. Three EEG channels (C3-A2, 

C4-A1 and reference A1-A2) were used from the PSG data with a sampling ratio of 200 

Hz. Sleep stages and respiratory events scoring was based on the general instructions for 

sleep stage labeling [20], using Sleepware G3 PSG software. 

2.2. EEG signal preprocessing 

EEG recordings from the three channels are divided into non-overlapping frames of 

300 s width. For each frame, the spectrogram is produced and the generated time series 

data per frequency for each channel are considered as separate input features. Finally, 

Z-normalization (standardization) is applied that speeds up training and ensures con-

vergence, especially when features have different dynamic range [21]. 

2.3. Convolutional recurrent neural network 

The convolutional recurrent neural network (CRNN) is a combination of a convolu-

tional neural network (CNN) and a recurrent neural network (RNN) [22-24]. In order to 

determine the exact time that each apnea starts and ends, a combination of 1D convolu-

tion layer (Conv1D) and Gate Recurrent Unit (GRU) is used. Conv1D extracts local fre-

quency-time features, while the following GRU is used for the overall apnea time mod-

eling (Figure 1). 

2.4. Neural network training 

EEG recordings are divided into non-overlapping frames and a label vector is gen-

erated for each frame. When the frame contains an annotated apnea event, as indicated in 

the PSG data, the corresponding time steps of the label vector are set to the value 1, oth-

erwise they are set to the value 0. In inference mode, a batch of consecutive ones (1) is 

considered a predicted apnea if it corresponds to more than 10 s in duration and a pre-
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dicted apnea is considered a True Positive if it overlaps with a scored apnea event, oth-

erwise it is considered a False Positive. 

 

     

Figure 1. Proposed apnea event detection model architecture. Three CONV-1D layers followed by 

a Bidirectional GRU layer and finally a TimeDistributed Dense layer. 

3. Results  

3.1. Event duration detection 

The agreement between the estimated MAD per patient and the reference MAD is 

presented with a scatter plot and a Bland-Altman plot (Figure 2). Estimated and reference 

MAD are very highly correlated (r=0.91, p<0.001), while the absolute error between the 

MAD values is 2.05 ± 1.66 s (mean ± standard deviation, SD). The Bland-Altman plot 

represents the difference between the reference and estimated MAD values against the 

averages of the two MAD values. The mean difference of the MAD values is -0.8 s, with a 

95% confidential interval ranging from -5.7 to 4.1 s. 

 

Figure 2. Agreement between the predicted and reference Mean Apnea-Hypopnea Duration. (a) 

Predicted vs. reference value; (b) Bland-Altman plot. 

3.2. Apnea-hypopnea index  

Reference and estimated AHI are strongly correlated (r= 0.88, p<0.001), while the 

mean difference of the AHI values is 7.3 events/h, with a 95% confidential interval rang-

ing from –18.8 to 33.3 events/h (Figure 3).  
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Figure 3. Agreement between the predicted and reference Apnea-Hypopnea Index. (a) Predicted 

vs. reference value; (b) Bland-Altman plot. 

3.3. Individual apnea events detection 

Per-apnea agreement for the test data recordings is shown in Table 2. Sensitivity and 

positive predictive value are 0.73 and 0.78, respectively. For the severe group, sensitivity 

is 0.87 and positive predictive value is 0.8, while both values decrease as we move from 

moderate to mild and finally to normal group. Hypopneas are the dominant type for the 

normal, mild and moderate group (83%, 58% and 51% of the total number of apneas re-

spectively), while obstructive apneas are the dominant type for the severe group (61%).  

Table 2. Performance results using individual apnea events for the 60 patients comprising the test 

set. 

Group Normal Mild  Moderate Severe All 

Group members 2 6 16 36 60 

Annotated apneas 18 354 1593 8474 10439 

True Positive 2 82 801 6757 7642 

False Positive 69 353 772 1013 2207 

Sensitivity 0.11 0.23 0.5 0.8 0.73 

Positive Predictive Value 0.03 0.19 0.51 0.87 0.78 

 

4. Discussion 

The apnea event detection model proposed here, exhibits high performance in the 

MAD detection and estimates AHI with accuracy for all apnea severity groups. It also 

detects individual events with high sensitivity and positive predictive value in the severe 

apnea group. 

The model exhibits high performance in the MAD detection and correlation is strong 

for all patient groups, normal, mild, moderate and severe. The absolute error between the 

MAD for the test set is 2.05 ± 1.66 s. This error is quite small, if we take into account that 

oxygen desaturation affects brain activity several seconds after the apnea onset. Since 

MAD can vary significantly in patients with the same AHI, its value can be used with 

AHI, to estimate the possible sleep apnea implications.  

Model generated AHI has strong correlation with the reference AHI, but is under-

estimated, since it is calculated based on recording time, whereas reference AHI is cal-

culated based on sleep time. A future improvement that distinguishes sleep/wake status 

using the EEG signals, would improve further the AHI estimation performance.  
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Individual apnea events detection for patients characterized by severe ap-

nea-hypopnea syndrome has high sensitivity and positive predicted value, while both 

metrics are decreased in patients that belong to the other three groups, moderate, mild 

and normal. There are two possible causes for these results. The first one is that the da-

taset imbalance between the severity classes may strongly affect the way the model is 

trained and therefore the provided accuracy. Our neural network model is trained mostly 

on the severe group and it is for this group that it achieves the best performance. The 

second reason is that normal and mild groups are dominated by hypopneas. According 

to the American Academy of Sleep Medicine manual, a hypopnea is detected when there 

is a reduction of more than 30 % in nasal pressure, in relation to pre-event baseline, that 

lasts more than 10 s and is associated with more than 3 % oxygen desaturation or an 

arousal. This definition induces a level of uncertainty in hypopnea scoring, due to varia-

bility in flow measurements and visual inspection [25].  

A limitation of this study, as mentioned before, is the imbalanced data that is used. 

The dataset has been retrieved from complete sleep studies at the hospital, which is an 

examination usually prescribed to patients complaining for severe apnea symptoms, 

such as loud snoring or excessive daytime sleepiness. Thus, patients characterized with 

severe apnea-hypopnea syndrome are the majority among the examined subjects.  

5. Conclusions 

The reported study proves the capacity to accurately determine the Mean Ap-

nea-Hypopnea Duration and the Apnea-Hypopnea Index depending only on EEG re-

cordings. Our method can detect most of the events in the severe apnea group, the group 

where accurate event detection is vital, while event-by-event detection increases the 

confidence of the method. 
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