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Abstract: Chemiresistive gas sensors are a crucial tool for monitoring gases on a large scale. For the 
estimation of gas concentrations based on the signals provided by such sensors, pattern recognition 
tools, such as neural networks, are widely used after training them on data measured by sample 
sensors and reference devices. However, in the production process of such sensor technologies, 
small variations in their physical properties can occur, which can alter the measuring conditions of 
the devices and make them less comparable to the sample sensors, leading to less adapted algo-
rithms. In this work, we study the influence of such variations with a focus on changes in the oper-
ating and heating temperature of graphene-based gas sensors. To this end, we trained machine 
learning models on synthetic data provided by a sensor simulation model. Our results provide in-
sights in the influence of different operating temperatures on the algorithm performance and show, 
that a well-balanced training set featuring several measuring temperatures can increase the robust-
ness of the prediction algorithms. 
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1. Introduction 
Chemiresistive gas sensors are widely used for the task of tracking different gases of 

interest in various areas since they are low-cost and flexibly usable in sensor networks. 
The working principle behind this technology is based on the adsorption of the gases on 
the conducting sensor surface and the measurement of the resistivity or conductivity of 
the material being influenced by the adsorbed molecules [1]. 

Often arranged in sensor arrays, these measurements are simultaneously performed 
with slightly different materials in order to create specific fingerprints for different gas 
types and to use pattern recognition algorithms for gas detection and concentration esti-
mation [2]. The pattern recognition techniques, such as neural networks, are therefore 
trained based on a sample device and then distributed on the other devices. For these 
algorithms, a good prediction accuracy is highly demanded in order to establish a precise 
assessment of the air quality by these devices in the locations of their application. 

However, when producing such sensors, small variations in their signal response are 
common between different sensors [3] (called sensor-to-sensor variations) which are 
caused by slight differences of the overall physical properties the sensors and, hence, 
change the input for the pattern recognition algorithms. This means, that these variations 
can have an impact on the overall sensor performance and, hence, on their effectiveness 
in high-quality environmental monitoring. 
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In order to study the potential fatality of these variations and to assess, how such 
effects might be avoided without the need of previous calibration or standardization, we 
performed simulation studies by using a system-level sensor model for a graphene-based 
gas sensor to simulate different sensor scenarios. Amongst different potential variation 
sources, our focus in this paper lies on the variations in the operating temperatures in a 
pulsed heating scenario, as such temperature shifts are a topic discussed in the literature 
[4]. 

2. Methodology 
In order to properly describe the methodology of our work, a short introduction of 

the stochastic sensor model, that was used to create synthetic data for the study, is given 
first. After that, the experimental setup of the study and the different simulation cases are 
shown. 

2.1. Sensor Modeling 
A system-level gas sensor model by Schober et al. [5,6] was used in order to generate 

signals with different variations in their temperature profile. Here, the stochastic simula-
tion of the adsorption and desorption of the gases of interest, for instance Ozone, is mod-
eled by discrete Markov processes on a sample grid representing the sensor surface. 
Therefore described as probabilities, the adsorption probability pa and the desorption 
probability pd can be expressed by equations 

[gas] = ݇ ⋅ ܿ[gas] and 

ௗ = ݇ௗ ⋅ ݁ି ா
⋅் , 

with ka and kd describing the interaction rates for the processes, E denoting the adsorption 
energy, and T denoting the temperature of the sensor surface. Note, that the surface tem-
perature has a direct influence on the desorption process on the sensor and, therefore, 
plays a crucial role in the generation of the sensor signal and its dynamics. 

The sensor output signal is subsequently determined by calculating the adsorption 
fraction on the sample grid, i.e., the ratio of adsorbed sensor sites and the total number of 
sensor sites. The results are then mapped to a relative resistance in a separate part of the 
model. By using different parameters for the simulation procedure, different functionali-
zations of the sensing material can be modeled, leading to three different output signals 
reacting slightly differently to certain gases. 

The inputs for the sensor simulation are the concentration profile comprising the time 
evolution of the Ozone concentration and the temperatures on the sensor surface with 
respect to time. The model parameters were chosen to fit the measurements of a graphene-
based gas sensor used in gas exposure measurements with different sensing materials. 

2.2. Experimental Setup 
The data that were used in our studies are based on three different Ozone concentra-

tion profiles with different characteristics which are shown on the top of Figure 1a–c. All 
profiles contain concentration values between 0 and 100 ppb of O3 and show different 
peak-shaped concentration blocks followed by time frames with no O3 of different length. 
The simulations of the sensor response, which are shown below the profiles, were per-
formed with different heating parameters between −15% and +15% deviation from the 
standard temperature settings. The time evolution of the surface temperature was using 
a pulse mode between the lower sensing temperature and the higher heating temperature. 
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Figure 1. Shows different concentration profiles as well as their simulation outputs for different 
temperature settings. Here, they are denoted as Profile A, B and C. 

From the results of the simulation, it can be concluded, that the different heating tem-
peratures have a visible influence on the sensor response. This can be explained by the 
desorption probability, which is highly dependent on the operating temperature. In gen-
eral, higher temperatures lead to a stronger desorption effect, which leads to a slower 
downwards drift of the sensor signal. Vice versa, a lower temperature profile leads to a 
stronger drift in the signal. Additionally, also the sensitivity to small concentration 
changes in the profile can be influenced by the operating temperature. 

The machine learning model which was used in order to train the pattern recognition 
models was a neural network with one hidden RNN layer comprising 50 GRU cells and a 
dense output layer for the gas concentration estimation. The models were trained by using 
early stopping and reducing learning rates. The input features for the model were the 
relative resistance of each of the different three sensor materials, their derivatives as well 
as an additional feature called the energy vectors evaluating the mutual energy between 
any combination of two relative resistance responses. 
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3. Results and Discussion 
In our work, we want to answer two questions: First of all, to which degree and at 

which deviance from the standard parameters can a deterioration in the sensor algorithm 
performance due to temperature-related sensor-to-sensor variations be noticed? And fur-
thermore, can this deterioration effect be minimized by using additional temperature par-
ametrizations in the training set in order to increase the stability of the neural network? 
In the following two sections we want to summarize some first results of our investiga-
tions on these topics.  

3.1. Influence of Temperature Parameters on Algorithm Performance 
The emphasis of the first part of the study is on the question how much the algorithm 

performance in predicting the O3 concentration will be decreased by increasing tempera-
ture variances. Therefore, the model which was trained with data form the standard tem-
perature configuration (Δܶ = 0%) was tested on datasets with different temperature var-
iations between -15% and +15%. Profile A was the training and Profile B the testing da-
taset. The results are shown in Figure 2a for negative variations and Figure 2b for positive 
ones. 

 
(a) (b) 

Figure 2. Algorithm performance evaluated in four different metrics (RMSE, MAE, standard devia-
tion, and R2-score) for O3 measurements. (a) shows the negative temperature variations whereas (b) 
shows the positive temperature variations. 

By analyzing these results, several effects can be seen: First of all, a steady decline in 
the model performance occurs for increasing deviation from the standard temperature 
settings. This effect starts to have a measurable impact starting at Δܶ = 10%, whereas the 
performance shift at lower deviations appears to be rather small. This observation sug-
gests, that the model might tolerate a temperature margin of 5% without losing perfor-
mance. 

Moreover, it is also noticeable, that the performance loss seems to be higher, if the 
absolute temperature settings are higher than the standard parameters (Δܶ > 0) than 
lower. This might be explained by the change in sensitivity that arises from stronger heat-
ing with might be captured less well by the machine learning model. It also has to be 
mentioned, however, that the choice of the concentration profile can also influence the 
magnitude of the observed effects.  

Overall, the claim that a variation in heating temperature can lead to serious perfor-
mance loss of the Ozone concentration prediction capability of the machine learning 
model, once a certain variation threshold is exceeded, can be substantiated by the data. 
Therefore, strategies to compensate for such effects appear to be necessary, if the margin 
of temperature-induced sensor-to-sensor variations is in the scope of such values. 
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3.2. Algorithm Robustness Analysis with Mixed Training Settings 
In a second study, the difference in training the neural network with one temperature 

setting (representing the use of one sample device) in comparison to training it with a 
diverse dataset comprised of several temperature settings(Δܶ ∈ {−10%; 0%; +10%}) was 
studied. Therefore, the training set (Profile B) and the test set (Profile C) were simulated 
under these different temperature conditions to train two models and to test them on the 
differently configured test sets. The results are shown in Figure 3. 

 
Figure 3. Comparison of the performance between a model trained on a single temperature setting 
(purple, Δܶ = 0 ) and on three different temperature settings (pink, Δܶ ∈ {−10%, 0%, 10%}) in 
terms of two different error metrics (RMSE) and (MAE). The models were evaluated on the same 
testing set with respect to their simulation using a different temperature setting shown on the x-
axis. 

The experiments show that the model trained with different temperature settings 
outperforms the single-temperature model in each test set configuration, both measured 
in RMSE and MAE. This substantiates the hypothesis that the stability of the algorithm 
can highly benefit from a well-balanced dataset comprising different temperature config-
urations in order to avoid overfitting to the standard temperature settings. 

Furthermore, is noticeable that even for the test set with the standard temperature 
settings, the prediction performance metrics seem to improve. This indicates that, even 
for these settings, the algorithm can benefit from the variations in the training set, leading 
to an overall more robust outcome to other concentration profiles. 

Also, it has to be pointed out, that the choice of the concentration profile can also 
have an impact on how visible these differences are. Therefore, a different configuration 
train/test was chosen in this investigation to show the general scope of the stability en-
hancement. 

4. Conclusions 
In this work, we studied the influence of different temperature settings on the pre-

diction performance of a neural network-driven gas sensor by using synthetic data from 
a stochastic sensor model. Our first results suggest that a certain deviation from the stand-
ard temperature parameters can lead to substantial performance loss. Moreover further 
investigations suggest, that the equipment of the training set with data from different tem-
perature settings was substantially improving the prediction outcome for the given data 
configuration, even for the standard temperature case. However, also the train/test set 
configuration has an effect on how well defined this improvement is. Overall, this sub-
stantiates the need for enriching the dataset in the training process of such sensors if such 
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sensor-to-sensor variations are likely to occur. However, additional simulation studies 
and also experimental investigations might be needed to further consolidate these find-
ings for more complex settings and profiles. 

In future research, it would be important to also investigate other sensor-to-sensor 
variations that can occur, such as differences in the sensitivity response and also different 
drift levels, in order to see, if such variations have similar effects on the model perfor-
mance and if they could also profit from a more diverse training set. 
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