

MILANO 1863

Université Gustave Eiffel

Towards a multi-interdigital transducer configuration to combine focusing and trapping of microparticles within a microfluidic platform: a 3D numerical analysis

Gianluca Mezzanzanica¹,Olivier Français²

¹ Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Italy; gianluca.mezzanzanica@mail.polimi.it ² ESYCOM Lab, Université Gustave Eiffel, CNRS, F-77454, Marne-Ia-Vallée, France; olivier.francais@esiee.fr

8th International Electronic Conference on Sensors and Applications // 1-15 November 2021

Introduction

Background:

- Microfluidics and Lab-On-a-Chip (LOC) devices.
- Acoustic manipulation of microparticles through acoustophoresis.
- Surface acoustic waves (SAW)-based devices.

Aim:

• Analysis of a multi-interdigital transducer configuration to achieve a versatile and efficient acoustic manipulation of particles.

[B.W. Drinkwater, Lab on a chip, 2016]

8th International Electronic Conference on Sensors and Applications // 1-15 November 2021

SAW-based devices

[J. Guo et al., *Journal of Colloidal and Interface Science*, 2015]

Device functioning:

- AC voltage signal applied to IDTs deposited on the surface of a piezoelectric substrate;
- Converse piezoelectric effect generates travelling SAWs (TSAWs) on the surface of the substrate;
- Two or more counter-propagating waves interact developing a standing SAW (SSAW);
- The SSAW is transmitted to the fluid contained in a microchannel, in form of pressure waves;
- The standing pressure field can be exploited for acoustic manipulation of microparticles dispersed in the fluid.

Two-IDTs configuration

Model:

- Piezoelectric effect: coupling between mechanics and electrostatics (piezoelectric constitutive law).
- Acoustic pressure field: Helmholtz wave equation.
- Forces acting on particles: acoustic radiation force and fluid drag force.

8th International Electronic Conference on Sensors and Applications // 1-15 November 2021

	LiNbO ₃ Substrate	PDMS Channel	Water Channel	PDMS Chamber	Water Chamber
Width	8627µm	1650µm	280µm	1650µm	1400µm
Length	8627µm	8627µm	8627µm	1650µm	1400µm
Thickness	500µm	100µm	50µm	100µm	50µm

8th International Electronic Conference on Sensors and Applications // 1-15 November 2021

Multi-IDTs configuration - SSAW

SSAW distribution caused by four TSAWs interacting.

8th International Electronic Conference on Sensors and Applications // 1-15 November 2021

Standing pressure field within the fluid domain contained in the PDMS structures.

8th International Electronic Conference on Sensors and Applications // 1-15 November 2021

8th International Electronic Conference on Sensors and Applications // 1-15 November 2021

Multi-IDTs configuration - Versatility

Versatility of the configuration:

- Design of the microstructure to generate a specific standing pressure field within the fluid domain (change position of the pressure nodes).
- Disposable PDMS microchannels can be used.

8th International Electronic Conference on Sensors and Applications // 1-15 November 2021

Multi-IDTs configuration – Trapping

One particle is trapped within the pressure node.

8th International Electronic Conference on Sensors and Applications // 1-15 November 2021

Conclusions

[Tian et al., Sci. Adv., 2019]

Conclusions:

- Low-cost fabrication;
- Easy integration in Lab-On-a-Chip devices;
- Microparticle focusing, sorting and trapping can be achieved;
- Versatility of the platform depending on the design of the microchannels;
- Applications towards biological cell sorting, isolation, and assembling can be considered based on this principle.

POLITECNICO

MILANO 1863

Université Gustave Eiffel

Thank you for your attention!

Gianluca Mezzanzanica¹,Olivier Français²

¹ Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Italy; gianluca.mezzanzanica@mail.polimi.it ² ESYCOM Lab, Université Gustave Eiffel, CNRS, F-77454, Marne-la-Vallée, France; olivier.francais@esiee.fr