

University of Nottingham UK | CHINA | MALAYSIA

> Material Damping Analysis of Triangular Cantilever Beam for Electromagnetic Vibration Energy Harvesting Applications

> > Dr. ChungKet Thein Dr. Faruq Muhammad Foong

University of Nottingham

Table of Contents

- ✤ 1 Introduction
- 2 Power and damping of a cantilevered electromagnetic VEH
- 3 Finite element modelling and methodology
- ✤ 4 Results and Discussion
- ✤ 5 Conclusion and Future work

Introduction

Background:

- Vibration energy harvesting (VEH) have emerged as one of the most promising sources of sustainable energy to power low-powered electronics.
- Mechanical vibrations into electricity, the two most common applied methods are piezoelectric transducers and electromagnetic induction.

Power and damping of a cantilevered electromagnetic VEH

- Based on Faraday's law of electromagnetism, voltage is induced in the coil when the coil vibrates in the magnetic field.
- Figure 1 illustrates an example of a typical cantilevered electromagnetic VEH device.

Figure 1. Design of a typical cantilevered electromagnetic vibration energy harvester.

Power and damping of a cantilevered electromagnetic VEH

• The maximum average power output induced by the harvester at the first vibration mode resonance can be written as [1].

$$P = \frac{mG^4}{16\zeta_s\omega_1} \tag{1}$$

where P is the output power, m is the effective mass of the harvester, G is the acceleration of the input vibration, ω_1 is the harvester's fundamental natural frequency and ζ_s is the first mode structural damping.

Power and damping of a cantilevered electromagnetic VEH

• For a stainless-steel material, the material damping ratio can be related to the critically damped stress, σ_c , by the following expression [2].

$$\zeta_m = 2.109 \times 10^{-8} (\sigma_c)^{0.8447} + 1.662 \times 10^{-3}$$
⁽²⁾

where σ_c is maximum von-Mises stress from the beam

• Therefore, the mechanical/material damping can be estimated

Finite element modelling and methodology

- Model in ANSYS workbench with the element size of 0.5 mm as shown in Figure 2.
- Both beams have same natural frequency of 32.34 Hz with the same proof mass of 19 g.
- Acceleration is 1.96 ms⁻²

Figure 2. Finite element model of a rectangular (left) and a triangular (right) cantilever beam with added proof mass

Results and Discussion

• Figure 3 shows the variation in material damping against the beam volume and the beam length for the triangular and the rectangular cantilever beam.

Figure 3. Variation material damping ratio with cantilever beam volume (left) and length (right) for a triangular and a rectangular cantilever beam.

Results and Discussion

• Figure 4 where a coil component which was modelled based on the real item was attached to the beam instead of the proof mass.

Figure 4. A triangular and a rectangular cantilever beam with an attached coil component

Results and Discussion

 Figure 5 shows that the amplitude responses of the two beams under the two scenarios

Figure 5. Comparison between the amplitude response of the triangular and the rectangular beam for the first scenario (left) and the second scenario (right).

• The maximum average power output at resonance for each beam in both scenarios was then estimated using the equation (3)

$$P = \frac{mG\omega_1 z_{max}}{2} \tag{3}$$

• The power harvested of two different scenarios are:

Scenario	1	2
Rectangular	11.3 mW	12.4 mW
Triangular	13.8 mW (+22.1%)	13.8 mW (+11.3%)

Conclusion and Future work

Conclusion:

- Triangular beam is better in term of power output as the damping is smaller by an average of 7.1%.
- At constrained beam volume, the power output of triangular beam was higher than rectangular beam by 21.7 %.
- At fixed beam length, the power output of triangular beam was higher than rectangular beam by 11.3 %.

Future work:

Experiment work will be conducted to verify the argument.

- [1] Li H, Tian C, Deng Z.D. Energy harvesting from low frequency applications using piezoelectric materials. Applied Physics Reviews 2014; 1: 041301.
- [2] Foong F.M, Thein C.K, Yurchenko D. Structural optimisation through material selections for multi-cantilevered vibration electromagnetic energy harvesters. Mechanical Systems and Signal Processing 2022; 162, p. 108044.

University of Nottingham UK | CHINA | MALAYSIA

Thank you