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Abstract: Concentric ring electrodes are noninvasive and wearable sensors for electrophysiological 

measurement capable of estimating the surface Laplacian (second spatial derivative of surface po-

tential) at each electrode. Previously, progress has been made toward optimization of inter-ring dis-

tances (distances between the recording surfaces of a concentric ring electrode), maximizing the 

accuracy of the surface Laplacian estimate based on the negligible dimensions model of the elec-

trode. However, this progress was limited to tripolar (number of concentric rings n equal to 2) and 

quadripolar (n = 3) electrode configurations only. In this study, inter-ring distances optimization 

problem is solved for pentapolar (n = 4) and sextopolar (n = 5) concentric ring electrode configura-

tions using a wide range of truncation error percentiles ranging from 1st to 25th. Obtained results 

also suggest consistency between all the considered concentric ring electrode configurations corre-

sponding to n ranging from 2 to 5 that may allow estimation of optimal ranges of inter-ring distances 

for electrode configurations with n ≥ 6. Therefore, this study may inform future concentric ring elec-

trode design for n ≥ 4 which is important since the accuracy of surface Laplacian estimation has 

been shown to increase with an increase in n. 
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1. Introduction 

Concentric ring electrodes (CREs; tripolar configuration shown in Figure 1A) are 

noninvasive and wearable sensors for electrophysiological measurement capable of esti-

mating the surface Laplacian (second spatial derivative of surface potential) at each elec-

trode which is not feasible with conventional disc electrodes (Figure 1B) and constitutes 

CRE’s practical relevance to the wearable sensor field [1–10]. Previously, progress has 

been made toward optimization of inter-ring distances (distances between the recording 

surfaces of a CRE), maximizing the accuracy of the surface Laplacian estimate based on 

the negligible dimensions model (NDM) of the electrode [11]. In NDM a single point of 

negligible diameter represents the central disc surrounded by concentric circles of negli-

gible width that represent the concentric rings. In [11] the inter-ring distances optimiza-

tion problem has been solved for tripolar (number of concentric rings n equal to 2) and 

quadripolar (n = 3) CRE configurations and 5th and 10th percentiles of absolute value of 

truncation term coefficient for the lowest remaining term order since this coefficient has 

been shown to be a predictor of the Laplacian estimation error [11,12]. Obtained results 

have been validated using finite element method modeling [11]. 
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Figure 1. Tripolar concentric ring electrode (A) and conventional disc electrode (B). 

In this study, the NDM based inter-ring distances optimization is extended to pen-

tapolar (PCRE; Figure 2A; n = 4) and sextopolar (SCRE; Figure 2B; n = 5) CRE configura-

tions. Specifically, the following steps have been taken: first, truncation term coefficient 

functions have been derived for the two aforementioned CRE configurations. Second, ab-

solute values of truncation term coefficients have been computed for an extensive grid of 

possible combinations of values of function arguments. Third, thresholds corresponding 

to percentiles ranging from 1st to 25th have been calculated extending the percentile range 

from [11]. Finally, these threshold values were used to determine the ranges of optimized 

inter-ring distances for each CRE configuration via determination and model fitting of a 

boundary hyperplane. 

 

Figure 2. Negligible dimensions models of pentapolar (A) and sextopolar (B) concentric ring elec-

trode configurations. 

Extension of the percentile range from [11] is related to the question of how small can 

the distances between the recording surfaces get without partial shorting due to salt 

bridges becoming a significant factor affecting the accuracy of Laplacian estimation. This 

question is still to be answered in the future using physical CRE prototypes. If prototype 

assessment results would suggest that physical considerations render the inter-ring dis-

tances within, for example, the 5th percentile region impractical, then inter-ring distances 

within the higher percentile region will be used such as, for example, the 10th percentile 

region (which was the only other percentile value considered in [11]) or higher. However, 

if prototype assessment results would suggest otherwise then using even lower percentile 

values such as the 1st or the 3rd percentiles could be feasible. To accommodate the range 

of possible scenarios, this study utilizes the wide 1st to 25th percentile range not just for 

PCRE and SCRE cases but also to extend the results of [11] for tripolar and quadripolar 

CRE configurations. 

2. Methods 

Following the methodology established in [11] the main steps taken to define the 

NDM based inter-ring distances optimization problem for the PCRE configuration (Figure 

2A) with the first middle ring radius αr, the second middle ring radius βr, the third middle 

ring radius γr, and the outer ring radius r to determine the optimal range of values for 

coefficients α, β, and γ such that 0 < α < β < γ < 1 are listed below. Identical steps were 

taken for the SCRE configuration with more detail on each step available in [11] for tripo-

lar and quadripolar CRE configurations. First, for each of the four rings the integral of the 

Taylor series has been taken along the circle of the corresponding radius. Second, the ma-

trix of truncation term coefficients APCRE was determined (1). Respective matrix ASCRE for 

SCRE configuration is given in (2). Third, the null space of APCRE was determined up to a 

(multiplication by a) constant factor. Fourth, four Taylor series integrals were combined 
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into a weighted linear combination solved for the Laplacian using the null space vector as 

coefficients and allowing cancellation of 4th, 6th, and 8th order truncation terms (as 

shown in [13] CRE with n rings allows cancellation of truncation terms up to the order of 

2n which for the case of PCRE configuration corresponds to the 8th order). Fifth, trunca-

tion term coefficient function cPCRE (α, β, γ, k) was derived for even truncation term order 

k ≥ 10 (3). Respective SCRE configuration function cSCRE (α, β, γ, δ, k) derived for even 

truncation term order k ≥ 12 is given in (4). Sixth, a constrained optimization problem was 

defined to minimize absolute values of truncation term coefficients thus allowing mini-

mization of the truncation error and maximization of the accuracy of surface Laplacian 

estimation. Seventh, this inter-ring distances optimization problem has been solved for 

the lowest remaining truncation term order equal to 10 (since it is the main contributor to 

the truncation error [14]) using a wide range of percentile values (1st, 3rd, 5th, 10th, 15th, 

20th, and 25th): 0 1
min ( , , ,10)PCREc
  

  
    . Same steps (and percentile values) were applied 

to solve the inter-ring distances optimization problem for the SCRE configuration: 
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3. Results 

Solving the inter-ring distances problem for PCRE and SCRE configurations follow-

ing the approach from [11] as described in the Methods section above involved using a 

wide range of truncation error percentiles to identify points on the boundary hyperplane. 

For the PCRE configuration, absolute values of truncation term coefficients based on func-

tion cPCRE (α, β, γ, k) from (3) were computed for all the combinations of values of 0 < α < β 

< γ < 1 with the increment of 1% (or 0.01) and k = 10. For the SCRE configuration, function 

cSCRE (α, β, γ, δ, k) from (4) was computed for all the combinations of values of 0 < α < β < γ 

< δ < 1 with the same increment of 1% and k = 12. Percentiles were used to find the values 

of α, β and γ (for PCRE configuration) and α, β, γ and δ (for SCRE configuration) that 

corresponded to points on the boundary hyperplane separating the absolute values of the 

10th order (for PCRE) and of the 12th order (for SCRE) truncation term coefficients below 
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and above the specific percentile. Resulting boundary hyperplane points were fitted with 

a nonlinear regression model of the form αβγ = m for PCRE and αβγδ = m for SCRE re-

spectively where m is a real constant. The choice of these particular models stemmed from 

their consistency with the models used for tripolar and quadripolar CREs in [11] that is 

discussed in the Discussion section of this paper. For example, plot of fitted boundary 

hyperplane model separating the absolute values of the 10th order truncation term coef-

ficients below and above the 5th percentile for the PCRE configuration is presented in 

Figure 3. The goodness-of-fit metric R-squared (R2) that represents the percentage of the 

total variation in the data explained by the model fit for the fitted model in Figure 3 was 

equal to 0.995 or 99.5%. 

Obtained results for CRE configurations including PCRE and SCRE as well as an ex-

tension of results for tripolar (no curve or hyperplane fitting necessary) and quadripolar 

(nonlinear boundary fitted with the rectangular hyperbola curve αβ = m) CREs to the same 

range of percentiles are presented in Table 1. Table 1 also includes the respective values 

of the goodness-of-fit metric R2 for all the CRE configurations except for the tripolar one. 

 

Figure 3. Fitted boundary hyperplane model (m = 0.213; R2 = 0.995) separating the absolute values 

of the 10th order truncation term coefficients below and above of the 5th percentile for the PCRE 

configuration. 

Table 1. Values of the model fitting constant (m) and goodness-of-fit metric R-squared (R2) for a 

range of CRE configurations and percentile values. 

Percentile 
Tripolar CRE Quadripolar CRE PCRE SCRE 

m R2 m R2 m R2 m R2 

1st 0.098 - 0.094 0.997 0.096 0.989 0.092 0.986 

3rd 0.171 - 0.166 0.998 0.165 0.994 0.158 0.991 

5th 0.221 1 - 0.2141 0.9981 0.213 0.995 0.204 0.992 

10th 0.313 1 - 0.3031 0.998 0.3 0.996 0.288 0.991 

15th 0.383 - 0.372 0.998 0.367 0.995 0.352 0.99 

20th 0.442 - 0.43 0.998 0.424 0.995 0.407 0.989 

25th 0.494 - 0.481 0.998 0.474 0.994 0.455 0.987 
1 results reported in [11]. 

4. Discussion 

This study demonstrates that NDM based inter-ring distances optimization approach 

from [11] can be extended from tripolar and quadripolar CRE configurations to PCREs 

and SCREs. Obtained results are presented in Table 1 and can be interpreted easily for a 

specific percentile value. For example, for the 5th percentile, optimal ranges of values of 

α, β and γ (for PCRE configuration) and α, β, γ and δ (for SCRE configuration) are deter-

mined by inequalities 0 < α < β < γ < 1 and αβγ ≤ 0.213 and by inequalities 0 < α < β < γ < δ 

< 1 and αβγδ ≤ 0.204 respectively. Moreover, this inter-ring distances optimization ap-

proach can be extended further to any larger number of concentric rings n even though 
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the number of decision variables increases by one for each additional concentric ring (Fig-

ure 2) further increasing the complexity of the optimization problem. For example, solving 

it for the septapolar (n = 6) CRE configuration results in the total number of values of the 

14th order truncation term coefficient function computed with the same increment of 1% 

used in this study equal to 71,457,453. This is compared to the 156,830 values of cPCRE (α, β, 

γ, 10) and 3,762,786 values of cSCRE (α, β, γ, δ, 12) functions used in this study. Determining 

the points on the boundary hyperplane which requires checking every function value for 

falling below the specific percentile while at least one of the surrounding values within 

the 1% increment along the α, β, γ, δ and ε (for septapolar CRE) axes falls above this per-

centile, becomes computationally intensive. Fortunately, the result described below pro-

vides an opportunity to roughly estimate optimal ranges for larger values of n. 

Another important result of this study is highlighting the consistency between fitted 

models with high goodness-of-fit (R2 in Table 1) as well as their constants (m in Table 1) 

for CRE configurations with 2 to 4 concentric rings. Specifically, fitted models range from 

α ≤ m (tripolar CRE) to αβ ≤ m (quadripolar CRE) to αβγ ≤ m (PCRE) to αβγδ ≤ m (SCRE). 

It is not unreasonable to hypothesize that for the septapolar CRE configuration with an 

additional middle concentric ring of radius εr such that 0 < α < β < γ < δ < ε < 1 the fitted 

model with high goodness-of-fit would be αβγδε ≤ m, etc. Moreover, even values of con-

stant m for aforementioned fitted models are consistent for a specific percentile. For ex-

ample, for the 5th percentile m ranges from 0.221 (tripolar CRE) to 0.214 (quadripolar CRE) 

to 0.213 (PCRE) to 0.204 (SCRE). It is not unreasonable to hypothesize that for the septapo-

lar CRE configuration the value of m will be less than or equal to 0.204. It should also be 

noted that in Table 1 values of R2 are decreasing for each percentile value with an increase 

in n while still remaining high (>0.985) overall. For example, for the same 5th percentile 

the value of R2 decreases from 0.998 (quadripolar CRE) to 0.995 (PCRE) to 0.992 (SCRE). 

5. Conclusions 

Ability to accurately estimate the surface Laplacian at each electrode constitutes the 

primary biomedical significance of CREs and this study allows maximizing estimation 

accuracy for two additional electrode configurations with larger numbers (4 and 5) of con-

centric rings n which is important since it has been shown that accuracy of Laplacian esti-

mation via CREs increases with an increase in n. Other contributions to the technical nov-

elty of this study include extension of the previous optimization results for CRE configu-

rations with fewer concentric rings (n equal to 2 and 3) to a wider truncation error percen-

tile range to demonstrate consistency between all the considered electrode configurations 

that may allow estimation of optimal ranges of inter-ring distances for CREs with n ≥ 6. 
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