

The 8th International Electronic Conference on Sensors and Applications 01–15 NOVEMBER 2021 | ONLINE

Sensors MDPI

Surface Reconstruction for Ground Map Generation in Autonomous Excavation

Fattah Hanafi Sheikhha, Jaho Seo Ontario Tech University

Outline

- Introduction
- Point Cloud Enhancement
- Curve Approximation Method
- Surface Reconstruction
- Results
- Conclusion

Introduction

- An autonomous excavator requires perception about its surrounding environment.
 - Navigation path planning.
 - Digging cycle planning.
 - Safety evaluation.
- LiDAR sensor can be used to scan the ground surface.
- Surface reconstruction can be implemented on point cloud data from LiDAR.
- Point cloud data are unordered set of data.
- Constructing a set of unordered data require high computation power and time.

Literature Review

- Galvez et al. Bézier curve and surface fitting of 3D point clouds through genetic algorithms, (2007)
 - Surface reconstruction with scatter data is challenging.
 - Most methods fail to converge to a hole-free and complete surface.
 - Additional information's such as connectivity and/or normal vectors are required for most methods.

Literature Review

- Hoppe et al. Surface reconstruction from unorganized point clouds. (1992)
 - Provide mathematical model for surface.
 - Works on any unordered point cloud.
 - Compute the tangent plane orientation.
 - Vulnerable to noises.

Literature Review

- Gu et al. Neural network approach to the reconstruction of freeform surfaces for reverse engineering. (1995).
- Echevarría et al. Extending neural networks for B-spline surface reconstruction. (2002)
 - Used neural networks approaches to optimize the reconstructed surface.
 - Requires high computation time

Research Motivation

- Proposed methods suffer from:
 - Prone to errors due to noises and outliers
 - Requiring additional information's
 - Requiring high computation power and time
 - Not guaranteed to produce a complete and hole-free surface

Research Objective

- Propose a method to
 - Reconstruct the surrounding ground surface
 - Hole-free surface
 - Discard noises and outliers
 - Approximate the point cloud with a mathematical model

Fattah Hanafi Sheikhha, Jaho Seo 8th International Electronic Conference on Sensors and Applications

Proposed Method's Flowchart

Point Cloud Enhancement

- Velodyne Puck (VLP-16) LiDAR with 16 laser channels was used to obtain point cloud data from the ground.
- Each laser firing may produce multiple reflections.
- The Last and Strongest are reported by the LiDAR.
- This study chose the Last option because the digging ground is always the last visible object in the environment.

Point Cloud Enhancement (continued)

- The LiDAR sensor reports the points in polar coordinates.
- Data points in polar coordinates can be translated into Cartesian coordinates using equations provided by the manufacturer.
- Processing data in polar coordinates has some advantages:
 - Data points can be arranged in an evenly distributed pattern.
 - Ensuring the generation of a valid and hole-free surface.

Curve Approximation Method

- The LiDAR sensor reports a series of paired azimuth and distance data for each elevation angle.
- The distance data may contain noises and outliers.
- Apply a curve approximation
 - Retain the shape of the distance.
 - Discarding the noises and outliers.
 - Having an analytical equation rather than sparse points in space

Curve Approximation Method (continued)

- Cubic Bézier curve approximated on each laser channel.
- The place of control points are optimized.
- Cost function is the least square error between raw data and approximated curve.

Surface Reconstruction

- Stitch the individual approximated curves together to make a single surface.
- A linear interpolation between neighbor curves is used.
- A series of points in polar coordinates were evaluated from the approximated surface.
- Converted into Cartesian coordinates to generate the actual ground shape.

Results

- A smooth and noiselessly surface reconstructed from raw point cloud.
- An analytical equation rather than sparse points

Conclusion

- Proposes a curve approximation-based method to reconstruct the surface of digging ground using data sets from a LiDAR sensor.
 - Represent surface in Cartesian coordinates.
 - Reducing computation time.
 - Robust to noises and outliers.
- Helps in:
 - Allow for better identification of the ground shape
 - Provide a solid foundation for the generation of optimal trajectory
 - Accurate tracking control
 - Safety evaluation

Future Works

- Limitation:
 - Linear approximation between neighbor laser channels
 - Poor performance on detecting sharp edges
- Future Works:
 - Use more smoother methods to interpolate between neighbor laser channels
 - Improve sharp edges detection
 - Add boundary constrains (Slope and curvature continuity)

Thank you for your attention.

Fattah Hanafi Sheikhha, Jaho Seo 8th International Electronic Conference on Sensors and Applications