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Abstract: To date, effective means of predicting pregnancy labor continues to lack. Magnetic field 

signals during uterine contraction have shown, in recent studies, to be a good source of information 

for predicting labor state with a greater accuracy compared with existing methods. The means of 

labor prediction methods from such signals appear to rely on a supervised learning post-processing 

framework whose calibration relies on an effective labelling of the training sample set. As a potential 

solution to this, using a reduced electrode channel from a magnetomyography instrumentation, we 

propose a multi-stage self-sorting cybernetic model that comprises of an ensemble of various post-

processing methods, and is underpinned by an un-supervised learning framework which allows 

for an automated method towards learning from the trend in the data to infer labor state and immi-

nency. Experimental results showed a comparable accuracy with those from a supervised learning 

method adopted in a prior study. Additionally, an architecture of how an intelligent cybernetic 

model can be used for labor prediction and cost saving benefits within a clinical setting is offered 

by this study. 

Keywords: cybernetics; decision support; biosensors; unsupervised learning; electromagnetism; 
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1. Introduction 

The end of a pregnancy involves the expulsion of the fetus from the uterus; which 

commences with the thinning and dilation of the cervix, heightened contractions which 

aid in the ejection of the fetus, and finally the expulsion of the fetus and the placenta 

alongside further contractions to help reduce the loss of blood following the birth of a 

child [1]. An image showing the various stages associated with labor alongside the sys-

tematic changes which take place in the uterus can be seen in Figure. 1. The ability to make 

a realistic prediction of when a woman is likely to go into labor allows for effective re-

source allocation to cater for the childbirth by a hospital, while also serving as a useful 

tool to determine if a probable preterm birth is likely to occur [2]. 
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Figure 1. The core stages associated with labor and birth [3]. 

An example of a means of labor prediction include the addition of 280 days to the 

woman’s last menstrual period, this method can be viewed as a guess-based estimation 

which, in addition to its general inaccuracy, has been seen to be ineffective in developing 

countries where literacy skills continues to lack amongst members of the population [4]. 

During the third trimester of pregnancy, uterine contractions have been seen to oc-

cur, the recordings of which carry key information regarding the state of the fetus/preg-

nancy, with an appropriate set of signal processing algorithms for information decoding 

[5,6]. Previous studies have been conducted using acquired contraction signals to predict 

labor [1], in addition to predicting preterm, but the majority of these published studies 

have not considered the systemic subtleties as to how their designed model could fit in a 

clinical setting [1]. To address this apparent gap in the literature, this paper represents a 

study in an ongoing project around the design of decision support models, while taking a 

holistic view on the clinical aspects relating to model design [7]. 

Prior work done by the authors has looked at the application of a supervised learning 

framework, which employs the use of previously labelled data examples and this ap-

proach helps guarantee the selection of the optimal model parameters that allow for max-

imum recognition of the characteristics of interest in the data which it is being trained to 

identify [8]. In contrast, an unsupervised learning architecture allows for a fully auto-

mated self-learning approach towards the identification of trends and cluster separation, 

which correspond to discrete class labels for the classification problem [9]. In this paper, 

we propose a cybernetic model capable of ‘self-sorting’ and predicting labor and com-

prises of a four-stage identification process, namely: a metaheuristic signal decomposition 

phase, feature extraction, dimensionality reduction and an unsupervised learning/cluster-

ing phase [10]. 

The data used as part of this paper was acquired from non-invasive magnetomygra-

phy (MMG) signals from uterine contractions available on the Physionet database [11–13]. 

Due to the nature of the data, prediction classes are split between a labor imminency class 

of 0–48 h/48 h+ and comprise of data collected from Black, Caucasian and Hispanic eth-

nicities. 

Specifically speaking, the contribution made in this manuscript is as below: 

- The application of a reduced channel MMG approach alongside a designed multi-

stage cybernetic model for the prediction of pregnancy labor. 

2. Materials and Methods 

2.1. Magnetic Field 

During anatomical uterine muscle contractions, electrophysiological ionic flow is 

said to be followed by a magnetic field, which is an orthogonal offset as per seminal work 

done by Faraday and Maxwell [14]. MMG sensors used for the acquisition of bio-magnetic 
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signal manifestations are based off this principle and represent a non-invasive and safe 

means of recording bio-magnetic field signals which, in turn, and carry a much stronger 

coupling to their primary sources due to the dynamic behaviour of magnetic waves [14]. 

The governing principle behind electromagnetic fields from the uterine wall can be 

described as follows using quasistatic approximations of Maxwell’s formulas, with the 

assumption of a linear forward model, for a case of continuous current flow, Biot-Savart’s 

law can be used to convey the effect of magnetic fields from an electric source, which in 

turn can be used to estimate the magnetic field, as shown in Equation (5) [14,15]: 

𝐵(𝑟) =
𝜇0

4𝜋
∫

𝐽(𝑟′) x 𝑙

𝑙3
𝑑𝑣′ (5) 

𝑙 = 𝑟 − 𝑟′ is a vector emanating from the source 𝑟′ to an observed point whose mag-

nitude is = ||𝑙||
2
, while 𝐽(𝑟′) is the current density from the source. 

Expressing the ratio of 𝑙/𝑙3 as −∇ (
1

𝑙
) =  ∇′ (

1

𝑙
), we yield (5) as follows: 

𝐵(𝑟) =  
𝜇0

4𝜋
∫ 𝐽(𝑟′) x ∇′

𝑙

𝒍
𝑑𝑣′ (6) 

Assuming rapid current density dissipation (6) can be rewritten as: 

𝐵(𝑟) =
𝜇0

4𝜋
∫

∇′ x  𝐽(𝑟′) 

𝑙
𝑑𝑣′ (7) 

Due to superposition of electric fields from both volume and primary current, a linear 

expression can thus be deduced between the magnetic field 𝐵 and the accompanying 

source current density 𝐽𝑝, which ultimately permits for the calculation of the potential 

given 𝑉 as shown in (8) [14,15]: 

𝐵(𝑟) =
𝜇0

4𝜋
∫(𝐽𝑝(𝑟′) + 𝑉(𝑟′)∇′ 𝜎(𝑟′)) x

𝒍

𝑙3
 𝑑𝑣′ (8) 

2.2. MMG Dataset 

The source of the MMG data used as part of this paper is from the Physionet data-

base, which holds the MMG signals recorded using the 151-channel SQUID Array for Re-

productive Assessment (SARA), which is a passive operational device for the acquisition 

of magnetic field signals [11–13]. Magnetic shielding was employed to prevent external 

sources of interference and the study received ethical approval from the University of Ar-

kansas for Medical Sciences Institutional Review Board, and an informed consent was ob-

tained from participants prior to the data collection process [11–13]. 

The MMG data consisted of a total of 25 patients, all of whom were in their third 

trimester of pregnancy,the acquisition rate for data recording was at 250Hz, which was 

downsampled to 32Hz [11–13]. Since the data was acquired at a variable rate of 10–20 min 

between different subjects, only the first 10 min from each subject was used for the signal 

processing work in this paper, as a means of standardization [11–13]. 

It should be noted that, due to errors encountered while downloading the dataset, 

the data used were from a total of 22 patients and 5 MMG channels were used as part of 

the signal processing exercise. 

An image showing the concept of the acquisition of an MMG field signal from a preg-

nant patient can be seen in Figure 2. 
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Figure 2. Acquisition of uterine contraction signals from a pregnant patient [15]. 

2.3. Cybernetic Model 

In the interest of parsimony and promotion of affordability of the MMG instrumen-

tation, only an arbitrarily selected first five of the total electrode channels from the MMG 

were used for the model build work in this paper, building on the results from previous 

work [16]. 

2.3.1. Signal Decomposition 

During anatomical contraction, there exists a large number of motor neurons simul-

taneously, which leads to a superposition of the output waves acquired with the associ-

ated physiological instrumentation, the decomposition of a signal has been seen to en-

hance the overall signal quality, and thus classification accuracy [17]. 

The signal decomposition method used as part of the cybernetic model is the bespoke 

linear series decomposition learner (LSDL), which uses a series of linear thresholds as the 

basis function for the deconvolution of the signal [18]. It was originally designed for 

source separation of mixture signals, and has recently been extended towards deconvolu-

tion of brain waves and neuromuscular signals in the area of rehabilitation medicine and 

upper-limb prosthesis control [17,18]. Over a number of case studies, results have shown 

that its performance is superior to that of the wavelet decomposition in terms of perfor-

mance and computational complexity [17,19,20]. 

The LSDL is a metaheuristic algorithm which uses a series of linear thresholds of a 

given magnitude, alongside a peak detection method, to iteratively deconvolve a stochas-

tic time-series into a set of sub-time series [17–20]. From this, all sub-time series are as-

sessed via a performance index to obtain an optimal decomposition region that can be 

parameterized by its spatial parameters. This represents a region within the stochastic 

time-series from the same source, and maximizes prediction power and minimizes uncer-

tainty. The optimal decomposition region is denoted as 𝑋𝑜𝑝𝑡, and represents the region 

from the time-series which should be used for further analysis in order to maximize pre-

diction and modelling accuracy, assuming the recording instrumentation and the source 

remains unchanged. Keys steps associated with the LSDL decomposition can be seen in 

Refs [17,18]. 

2.3.2. Feature Extraction 

A select list of features are to be extracted from the signal at this stage, and can be 

seen as follows: MP, WL, slope sign change (SSC), root mean squared (RMS), sample en-

tropy (SampEN), cepstrum (Ceps), maximum fractal length (MFL), median frequency of 

power spectrum (MF), simple squared integral (SSI) and variance (VAR) [16,21]. The list 

of candidate features to be extracted comprises a smaller set of features when compared 

to related studies that have worked with this dataset—this is due to the advantages of-

fered by the LSDL—i.e., an optimal decomposition of the signal which allows for a more 

parsimonious signal modelling [16].The threshold value used to for the calculation of the 

SSC, was 1µv, while the SampEN was computed using m as 2 and r as 0.2. 
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It should be noted that, for the results described as part of Section 3, the SMOTE 

artificial sample generator algorithm was used for the increment of training examples and 

for class balancing. 

2.3.3. Dimensionality Reduction 

The concept of dimensionality reduction refers to methods which are used to com-

press and trim down what ordinarily would be a high dimension vector, thus removing 

redundancies from the data and ultimately allowing for quicker post-processing of the 

reduced dimensional vector, after reduction [22]. The principal component analysis (PCA) 

is a linear dimensionality reduction method which has been seen in previous studies to 

be optimal for a lower dimensional embedding of feature vectors from uterine contraction 

signals [22]. The mathematical flow and framework behind the PCA method can be seen 

in [23]. In this step, the first two PCs were selected, which accounted for 95%+ of the var-

iability of the data, thus effectively compressing the data which comprises 10 columns to 

two. 

2.3.4. Unsupervised Learning and Labor Prediction 

In this final stage, the two PCs are projected into feature space where clustering and 

data classes are formed to represent the two possible labor states. 

The Gaussian mixture model (GMM) represents a probabilistic unsupervised learn-

ing model which was used for the clustering exercise in this paper [24]. As the classifica-

tion problem at hand involved a two-cluster assignment, an a priori value of 2 would need 

be set as a default during this stage. The GMM’s architecture can be described as a para-

metrized mixture which can be described by its mean and associated co-variances. The 

iterative learning procedure of the GMM is based on the expectation-maximization (E-M) 

which works with the maximum likelihood estimation sequence [23,24]. 

In this work, the GMM was used with the hard clustering option where each data 

point is assigned a single cluster only. A flow sequence representation of the cybernetic 

labor prediction model showing the various stages, can be seen in Figure 3. 

 

Figure 3. Flow diagram showing the different stages of the cybernetic prediction model. 

  



Eng. Proc. 2021, 3, x FOR PEER REVIEW 6 of 7 
 

 

3. Results and Conclusions 

The optimal decomposition level of the signal from the LSDL was seen to be from the 

third iteration of the upper-threshold region. The performance of the cybernetic model 

was assessed using a hold-out data which comprised of an unseen 20% of the whole da-

taset, which was utilized as the test set. The model converged within 30 iterations and had 

a mixture proportion of 0.486 and 0.514, where the mixture proportion reflects an accepta-

ble, bias for data points to be clustered in cluster two. The results of the initial cluster 

assignment and model training provided an accuracy of 84.9%, while the hold-out result 

produced an accuracy of 85.4%, thereby showing good capability of sorting through the 

various labor states. 

A PCA visualization of the two labor state classes with the true classes plotted can be 

in Figure 4, where it can be seen in contrast that the extent to which labor states can be 

distinguished using this cybernetic model hinges on the inclusion of the LSDL to help 

reduce the uncertainty from the signal, which can allow for a more effective cluster as-

signment process. 

 

Figure 4. PCA plot showing cluster separation with the LSDL (left) and without pre-processing with 

the LSDL (right), where Blue cluster-class 1/0–48 h, and Red cluster-class 2/48 h+. 

Compared to previous work which applied the supervised learning framework to 

achieve accuracies of about 90%, although the results are slightly lower, the proposed cy-

bernetic framework allows for a greater automated decision support framework which is 

self-sorting, thus implicitly providing a framework with cost saving benefits [16]. Addi-

tionally, the method proposed in this study may find applications in the domain of intel-

ligent clinical decision support system targeted towards chronic diseases diagnoses 

[25].With a view to enhancing the classification prowess of the cybernetic model, a fifth 

stage could be included where the automated labelling of the data is conducted in the 

prior stage using the GMM, and thus fed into a more powerful supervised learning model 

for the final classification decision, although this inclusion will increase the overall model 

complexity associated with the classification process. 
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