

The 7th International Electronic Conference on Medicinal Chemistry (ECMC 2021) 01–30 NOVEMBER 2021 | ONLINE

BP-C4: A new diarylpentanoid with Potential Activation of the p53 Pathway

Joana Moreira^{1,2}, Joana Almeida³, Joana B. Loureiro³, Helena Ramos³, Madalena Pinto^{1,2}, Lucília Saraíva^{3,*}, Honorina Cidade^{1,2,*}

¹ Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;

² CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal;

³ LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

* Correspondence: lucilia.saraiva@ff.up.pt (L.S.); hcidade@ff.up.pt (H.C.)

BP-C4: A new diarylpentanoid with Potential Activation of the p53 Pathway

Abstract: The p53 protein is one of the most important tumor suppressors. In about half of human cancers retaining wild-type (wt) p53, its pathway is inactivated due to the overexpression of endogenous negative regulators, namely murine double minute 2 (MDM2) and X (MDMX). Therefore, the disruption of p53-MDM2/X interactions represent an efficient and selective therapeutic strategy against wt p53expressing tumors.¹ Diarylpentanoids are a promising antitumor agents² with two aromatic rings connected by a five-carbon bridge. Although the underlying molecular mechanism by which these compounds suppress cancer cell growth is still unclear, the interference with the p53 pathway has been described.^{3, 4} However, the interference with p53-MDM2/X interactions was never explored. Thus, in silico studies of a library of diarylpentanoids led us to the identification of potential new MDM2/X ligands. The diarylpentanoids with the best docking scores obeying the druglikeness and ADMET prediction properties were synthesized. Their antiproliferative activity on colon cancer HCT116 and fibroblasts HFF-1 cells was evaluated, being the most potent and selective compounds further studied to explore their effect as inhibitors of p53–MDM2/X interactions. BP-C4 was identified as potential dual inhibitor. Additionally, in absence of p53 and in cells expressing a mutant p53 form the growth inhibitory effect was significantly reduced. Furthermore, the growth inhibitory effect of BP-C4 was associated with induction of cell cycle arrest and apoptosis. Computational docking studies were performed in order to predict docking poses and residues involved in the inhibition of p53-MDM2/X interactions.

Keywords: Antitumor activity; p53; diarylpentanoids; p53-MDM2/X inhibitors; in silico studies

1. Lemos, A. et al., Med. res. rev. 2016, 36, (5), 789-844; 2. Moreira, J. et al., Eur. J. Med. Chem., 2020, 112177; 3. Selvendiran, K. et al., J. Biol. Chem. 2007, 282, (39), 28609-28618; 4. Modzelewska, A. et al., Bioorg. Med. Chem. 2006, 14, (10), 3491-3495.

Introduction

- ✓ In human tumors retaining wild-type (wt) p53, the p53 pathway is inactivated due to the overexpression of MDM2 and MDMX
- ✓ The disruption of p53-MDM2/X interactions represents an efficient and selective therapeutic strategy against wt p53-expressing tumors¹
- The interference of diarylpentanoids with the p53 pathway has been described. ^{2,3,4} Nevertheless, their effect on p53-MDM2/X interactions has never been explored

Aim

Discovery of **new diarylpentanoids** with **p53-MDM2/X dual inhibitory activity** and adequate **drug-likeness** and **ADME** profile.

1. Lemos, A. et al., Med. res. rev. 2016, 36, (5), 789-844; 2. Moreira, J. et al., Eur. J. Med. Chem., 2020, 112177; 3. Selvendiran, K. et al., J. Biol. Chem. 2007, 282, (39), 28609-28618; 4. Modzelewska, A. et al., Bioorg. Med. Chem. 2006, 14, (10), 3491-3495.

Results and discussion *_ In silico studies*

¹ using SwissADME web server; ² using MDM2 and MDMX as targets; program PyRx; ¹ using SwissADME and PreADME web server.

Results and discussion _ Synthesis

- ✓ Diarylpentanoids with the best docking scores complying with the drug-likeness and ADMET properties were subsequently prepared
- ✓ In addition, four structure-related diarylpentanoids with docking scores lower than positive controls, were also synthesized, in order to understand the relationship between the docking scores, docking poses, and % of p53-MDM2/X inhibition activity

Compound ID	R ₂	R ₃	R ₄	R ₅
1	Br	Н	Н	Н
2	Cl	Н	Н	Н
3	F	Н	Н	Н
4	OCH ₃	Н	Н	Н
5	CH_3	Н	Н	Н
6	Н	Br	Н	Н
7	Н	OCH₃	Н	Н
8	Н	CH ₃	Н	Н
9	Н	Н	Br	Н
10	Н	Н	Cl	Н
11	Н	Н	F	Н
12	Н	Н	OCH ₃	Н
13	Н	Н	CH ₃	Н
14, 27	Н	Н	$N(CH_3)_2$	Н
15, 28	Н	Н	N(CH ₂ CH ₃) ₂	Н
16, 29	Н	Н	ξ−N_O	н
17	-00	H ₂ O-	Н	Н
18	OCH ₃	OCH ₃	Н	Н
19	OCH ₃	Н	OCH ₃	Н
20	OCH ₃	Н	Н	OCH ₃
21	Н	-0CH ₂ O-		Н
22	Н	OCH ₃	OCH ₃	Н
23	Н	OCH ₃	Н	OCH ₃
24	¢−N _N	Н	Н	F
25	OCH ₃	Н	OCH ₃	OCH ₃
26	H	OCH ₃	OCH ₃	OCH ₃

Results and discussion _ Biological activity

• Screening assay based on in vitro growth of human cell lines

Table 1: GI₅₀ values of compounds **1-29** in human cancer HCT116 p53^{+/+} and normal fibroblasts HFF-1 cells.

	GI ₅₀ (GI ₅₀ (μM)			Gi _{so} (μΜ)		
Compound ID	HCT116 p53 ^{+/+}	HFF-1	SI*	Compound ID	HCT116 p53 ^{+/+}	HFF-1	SI*
1	> 25			15	> 25		
2	> 25			16	> 25		
3	0.69 ± 0.21	0.77 ± 0.30	1.12	17	0.64 ± 0.03	0.59 ± 0.005	0.92
4	2.45 ± 0.07	1.44 ± 0.12	0.59	18	0.68 ± 0.02	0.89 ± 0.07	1.31
5	3.8 ± 0.42	3.24 ± 0.01	0.85	19	1.65 ± 0.64	2.21 ± 0.08	1.34
6	0.9 ± 0.14	0.63 ± 0.008	0.7	20	0.87 ± 0.03	0.63 ± 0.03	0.72
7	0.99 ± 0.01	0.55 ± 0.15	0.56	21	4.55 ± 0.95	14.76 ± 2.21	3.24
8	1.21 ± 0.01	3.88 ± 0.022	3.21	22	1.75 ± 0.10	0.69 ± 0.04	0.39
9	10.1 ± 4.85	9.45 ± 2.62	0.94	23	0.63 ± 0.01	0.49 ± 0.01	0.78
10	6.25 ± 1.18	36.20 ± 5.54	5.79	24	0.22 ± 0.02	0.33 ± 0.06	1.5
11	0.71 ± 0.08	0.55 ± 0.01	0.77	25	> 25		
12	> 25			26	0.17 ± 0.01	1.21 ± 0.07	7.12
13	> 25			27	> 25		
14	> 25			28	> 25		
15	> 25			29	> 25		

*SI = selective index (GI₅₀ of HFF-1/GI₅₀ of HCT116 $p53^{+/+}$)

Compounds 10 and 26 showed potent and seletive growth inhibitory effect on HCT116 cells

Results and discussion _ Biological activity

• Yeast-based assay to screen for inhibitors of p53-MDM2/X interactions

Figure 1. (A) Effect of 10 μ M nutlin-3A and compounds 10 and 26 (10 μ M and 25 μ M) on the percentage of growth of yeasts expressing p53 and MDM2, after 42 h treatment. (B) Effect of 25 μ M compound 10 on the growth of yeast cells transformed with the empty vector, after 42 h. (C) Effect of 25 μ M compound 10 on the growth of yeast cells expressing p53, after 42 h (D) Effect of 25 μ M SJ-172550 (SJ) and compound 10 on the growth of yeasts expressing p53 and MDMX, after 42 h. Data are mean \pm SEM of at least five independent experiments; values significantly different from DMSO are indicated (***p<0.001, **p<0.05).

Results and discussion <u>Biological activity</u>

Study of the mechanism of action of compound 10

The inhibitory effect was significantly reduced in HCT116 p53^{-/-} cells and on MDA-MB-231, which expresses mutp53

Table	2: Growth inhibitory effe	1DA-MB-231 tumor cells.		
		, μM		
	Compound ID	HCT116 p53 ^{-/-}	MDA-MB-231	
	10	10.13 ± 0.47*	> 50*	Results suggest a potential selectivity of
	Data represent mean ± SE different from HCT116 p53	compound 10 towards the wt p53 pathway.		

Figure 2. Effect of 10 on cell cycle, apoptosis, and protein levels of p53 and its transcriptional targets, in HCT116 p53^{+/+} cells. (A) Effect of 12 µM 10 on apoptosis after 48 h treatment. (B) Effect of 12 µM 10 on cell cycle progression after 48 h treatment. (C) Protein levels of p53 and its transcriptional targets after 48 h treatment with 12 µM 10 or DMSO. Values significantly different from DMSO are indicated (*p<0.05).

- arrest at G0/G1 phase
- \checkmark increased the p53 expression levels, p21 and the pro-apoptotic protein PUMA
- ✓ induced PARP cleavage

Α

Results and discussion _ Docking studies

Compound **10**, the **active diarylpentanoid** in the **yeast assay** and also one that was predicted to **bind more stably** *in silico* **to MDM2** (-7.1 Kcal.mol-1) and **MDMX** binding pocket (-6.4 Kcal.mol-1), were further analyzed in terms of docking poses and residues involved in the p53–MDM2/X potential interactions

Figure 3. A) Predicted binding poses of 10 (represented in blue sticks) in the binding site of MDM2; (B) Predicted binding poses of 10 (represented in blue sticks) in the binding site of MDM2/X is represented as surface, where carbon, oxygen, nitrogen, and sulfur are represented in, yellow, red, blue, and orange, respectively. Hydrogen interactions are depicted with a dashed yellow line. Residues involved on polar interactions are labelled and represented in green.

Compound 10 establishes three hydrogen interactions with Leu-54, Gly-58, and Val-93 and non-polar interactions with MDM2 Compound 10 establishes one hydrogen interaction with Met-53 and non-polar interactions with MDMX

Conclusions

Acknowledgments

This research was partially supported by the Strategic Funding UIDB/04423/2020 and UIDP/04423/2020 (Group of Natural Products and Medicinal Chemistry, CIIMAR) and UIDB/50006/2020 (LAQV/REQUIMTE), through national funds provided by the FCT and within the framework of the program PT2020 and ERDF. the project PTDC/SAUPUB/28736/2017. This research was also supported by IINFACTS, grant number CHIRALSINTESE_APSFCT_IINFACTS_2021. Joana Moreira and Joana Almeida acknowledges their grants (SFRH/BD/135852/2018 and 2020.05026.BD, respectively).

UNIÃO EUROPEIA Fundo Europeu

