

Exploring the Bioisosterism of Proline residue in Melanostatin neuropeptide using heteroaromatic scaffolds

Beatriz L. Pires de Lima^a, Sara C. Silva-Reis^a, Xavier Cruz Correia^a, Hugo F. Costa-Almeida^a, Xerardo García-Mera^b, José E. Rodríguez-Borges^a, Ivo E. Sampaio-Dias^{a,*}

a) LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal;
 b) Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.
 * Corresponding author e-mail: idias@fc.up.pt

Keywords: Allosteric Modulators, Dopamine Receptor, Melanostatin, Niacin, Peptidomimetics

Introduction

Parkinson's disease (PD) is the most common motor neurodegenerative disorder of the central nervous system, affecting 20 million people worldwide.¹ Common symptoms include tremors, bradykinesia, gait alterations, sleeping disorders, fainting, and dementia. Currently, PD treatments are focused on dopamine (DA) potentiation through the administration of a DA precursor - levodopa (L-DOPA) - and coadministration of inhibitors of the catechol-O-methyl transferase and monoamine oxidase B enzymes.² Even though L-DOPA regimen is able to control the progression of PD motor symptoms, long-term therapy causes serious health concerns. In this sense, pharmacological alternatives are mandatory.

Melanostatin

Melanostatin (MIF-1, **Figure 1**), is an endogenous hypothalamic neuropeptide derived from the oxytocin hormone that acts as a positive allosteric modulator (PAM) of the D2 Receptors (D_2R).³⁻⁵ By increasing the D_2R affinity for DA, these receptors are activated at lower DA concentration, being thus clinically relevant. Previous studies developed by our research group reveal that the replacement of L-Proline (Pro) residue by heteroaromatic scaffolds are well tolerated, rendering analogues with PAM activity comparable to the parent neuropeptide.³⁻⁵

- Aim

In this work, twelve novel MIF-1 analogues (Figure 1) were synthesized and chemically characterized by incorporation of Niacin, also known as Vitamin B_3 , as a Pro surrogate.

Scheme 1. Synthesis of MIF-1 peptidomimetics. Reagents and conditions: (i) Et_3N , TBTU, CH_2CI_2 ; (ii) TFA, CH_2CI_2 ; (iii) NH_3 7 M in MeOH.

[–] **Preliminar Pharmacological Assays**

Preliminar pharmacological assays reveal that peptidomimetic **8a** enhanced DA pontency more than 3 times at subnanomolar concentration when compared with MIF-1.

450-				
150-	EC ₅₀ = 92.92 nM	- O- DA + 0.01 nM MIF-1	¹⁵⁰ EC ₅₀ = 17.03 nM	- O- DA + 0.01 nM 8a
	$E_{max} = 100\%$	-D- DA	$E_{max} = 100\%$	

- Undergoing Work

peptidomimetic is Currently, the **8**a toxicity and other biological undergoing assays. This work is expected to provide structure-activity relationship useful information for the rational design of potent PAMs of D_2R , paving the way for the development of new anti-Parkinson hits.

Acknowledgements

References:

(1) Balestrino, R.; Schapira, A. H. V. *European Journal of Neurology* 2020, *27*, 27.
(2) Dorszewska, et al., W. *Current Genomics* 2014, *15*, 11.
(3) Sampaio-Dias, I. E.; et al. *Journal of Medicinal Chemistry* 2021, 64, 6209.
(4) Sampaio-Dias, I. E.; et al. *ACS Chemical Neuroscience* 2021, *12*, 203.
(5) Sampaio-Dias, I. E.; et al. *ACS Chemical Neuroscience* 2019, *10*, 3690.

Thanks are due to Fundação para a Ciência e Tecnologia (FCT, Portugal) for funding our Research Unit (ref. UIDB/50006/2020). IES-D and SCS-R thank FCT for funding through the Individual Call to Scientific Employment Stimulus (Ref. 2020.02311.CEECIND/CP1596/CT0004) and doctoral grant SFRH/BD/147463/2019, respectively. XG-M thanks Xunta de Galicia for financial funding with references GPC2017/GI-1597 and REDES2017-REGID.

