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Abstract: By the reaction of fullerenyl azide with terminal acetylenes previously undescribed 1-bu-

tyl-2-triazolylfullerenes were synthesized for the first time, in which the heterocyclic fragment is 

directly attached to the fullerene backbone. Water-soluble complexes of the synthesized adducts of 

fullerene with polyvinylpyrrolidone showed high cytotoxic activity towards tumor cells of the 

Jurkat, K562, U937 lines. 
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1. Introduction 

N-containing heterocycles such as triazoles and tetrazoles are known pharmaco-

phores and are widely used in drug development. Thus, it is known that 1,2,3-triazoles 

have a wide spectrum of biological action [1,2] and exhibit high antitumor, antiviral, an-

tibacterial, antifungal and other activity. An increase in the biological activity of organic 

compounds after the introduction of tri- and tetrazole fragments into them is associated 

with a moderate dipole character of the heterocycle, the possibility of additional hydrogen 

bonds formation, resistance to redox reactions and acid or alkaline hydrolysis [3]. 

Fullerenes and their derivatives are of particular practical interest from a medical 

point of view. The biological activity of fullerenes is based on three properties: electron 

deficiency, lipophilicity, and the ability to react with free radicals. Currently a great num-

ber of published papers describing various fullerene derivatives with various activity [4–

9]. Despite this, there is practically no information in the literature on the synthesis of 

biologically active fullerenes containing triazole fragments. For example, it is known [10] 

that the conjugate of fullerene with doxorubicin (DOX) exhibits an antiproliferative effect 

in comparison with unconjugated DOX upon incubation with MCF-7 cancer cells. In this 

case, hybrid fullerene molecules with biologically active diene acids containing triazole 

fragments in their structure exhibit a higher selectivity of action with respect to a wide 

range of tumor cells [11]. In turn, hexamethanofullerene with six triazole cycles was found 

to have high antiviral activity in an infectious model against the Ebola pseudovirus [12]. 

All of the above examples of triazole-containing fullerenes are characterized by a signifi-

cant removal of the heterocyclic fragment from the fullerene framework, and therefore, 

their mutual influence on each other is leveled. 

In this work, we discuss the synthesis of new triazole-containing fullerenes, in which 

the heterocyclic substituent is directly bonded to the core of the carbon molecule, and 

provide preliminary data on their cytotoxic activity. 
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2. Results and Discussion 

The synthesis of the previously undescribed fullerenyltriazoles 2-4 was carried out 

under the conditions of the alkyne-azide method. Fullerenyl azide 1, which was previ-

ously synthesized for the first time in our laboratory [13], and a number of terminal acet-

ylenes containing cyclopropyl, cyclohexyl, and isoindoldione substituents, which are part 

of a large number of drugs, were used as precursors. 

 

Scheme 1. Synthesis of 1-butyl-2-triazolyl-dihydrofullerenes 2-4. 

The structure of the synthesized compounds was reliably determined applying mod-

ern physicochemical methods of analysis such as NMR and MALDITOF/TOF mass spec-

trometry. 

We carried out preliminary experiments antitumor effect in vitro of an aqueous so-

lution of the polyvinylpyrrolidone complex of synthesized fullerene adduct 2-4 containing 

triazole fragments, using K562, U937, Jurkat cell lines including the determination of IC50 

using flow cytofluorimetry (Table 1). 

Table 1. Cytotoxic activities in vitro of compounds 2-4 measured on tumor cell cultures (Jurkat, 

K562, U937) (µM). 

Comp. 
Jurkat 

(IC50, µM) 

U937 

(IC50, µM) 

K562 

(IC50, µM) 

2 0.05 ± 0.01 0.16 ± 0.01 0.19 ± 0.02 

3 0.04 ± 0.01 0.04 ± 0.01 0.15 ± 0.01 

4 0.02 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 

The experimental data prove that the synthesized novel fullerene adducts 2-4 exhibit 

cytotoxic effect with respect to the selected tumor cell lines in the range IC50 = 0.02–0.19 

µM, the most active is triazolylcontaining fullerene 4. 

Currently, the Laboratory of Molecular Design and Biological Screening of Candidate 

Substances for the Pharmaceutical Industry at the Institute of Petrochemistry and Cataly-

sis of RAS is conducting more detailed studies of the antitumor activity of synthesized 

new fullerene derivatives using a wide range of cancer cells as examples. 

3. Materials and Methods 

All reactions were performed under an argon atmosphere and in anhydrous solvent. 

The solvents and reagents were dried or refined according to the literature procedures. 

The reaction products were analyzed on a HPLC chromatograph Shimadzu SPD-20A (Ja-

pan) equipped with the UV detector at 313 or 340 nm. The mixtures were separated on a 

preparative column Cosmosil Buckyprep Waters (250 × 10 mm) at ~20 °C. Toluene was 

used as eluent, the flow rate was 3.0 mL·min–1. The 1H and 13C NMR spectra were run on 

a Bruker Avance-500 spectrometer. The mass spectra were obtained on an UltraFlex III 

TOF/TOF (Bruker Daltonik GmbH, Germany) operating in linear (TOF) and reflection 
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(TOF/TOF) positive and negative ion modes. S8 and DCTB (trans-2-[3-(4-tert-bu-

tylphenyl)-2-methyl-2-propenyliden]malononitrile) were used as the matrix. 

Procedure for the synthesis of triazolylcontaining fullerenes 2-4. 

Triazolylcontaining fullerenes were obtained by alkyne-azide addition in the pres-

ence of a copper (I) catalyst Cu(OAc)2 using the «click» reaction method. In a two-necked 

flask, 1-azido-2-butyl(C60-Ih)[5,6]fullerene (1) (0.05 g, 0.061 mmol) was dissolved in chlo-

robenzene (10 mL) with vigorous stirring, acetylene (0.061 mmol) was added, in the pres-

ence of Cu(ОAс)2 (0.005 mmol) and Na ascorbate (0.009 mmol), then tert-butanol and wa-

ter were added in a 1:1 ratio. The reaction mixture was stirred for 12 h at room tempera-

ture. 50 mL of water was added to the reaction mass, the organic layer was separated and 

passed through a Schott filter, an individual compound was isolated using high perfor-

mance liquid chromatography. The yields of the synthesized compounds ranged from 75 

to 81%. 

1-Butyl-2-(4′-cyclopropyl-1H-1′,2′,3′-triazol-1′-yl)(C60- Ih)[5,6]fullerene 2 

Brown powder; yield 81%. IR (KBr, neat, cm−1): 2950, 2920, 2852, 1637, 1508, 1025, 525. UV-

Vis (CHCl3), λmax, nm: 258, 327, 427. 1H NMR (500 MHz, CDCl3:CS2 1:5) δ 1.00 (t, J 7 Hz, 

3H, CH3), 1.13–1.18 (m, 4H, 2CH2), 1.46–1.51 (m, 2H, CH), 1.98–2.08 (m, 2H, CH2), 2.24–

2.29 (m, 1H, CH), 2.77–2.99 (m, 2H, CH2), 8.40 (s, 1H, CH). 13С NMR (125 MHz, CDCl3) δ 

7.2, 8.3, 14.1, 23.5, 31.3, 38.3, 65.9, 81.2, 123.1, 139.6, 139.9, 141.3, 142.4, 142.8, 142.9, 143.1, 

143.2, 144.5, 144.9, 145.4, 145.7, 145.8, 146.2, 146.3, 146.4, 146.6, 146.8, 147.8, 148.4, 149.8, 

154.7. HRMS (MALDI TOF/TOF), m/z: calcd. for C69H15N3 885.1467; found 885.1463. 

1-Butyl-2-(4′-cyclohexyl-1H-1′,2′,3′-triazol-1′-yl)(C60-Ih)[5,6]fullerene 3 

Brown powder; yield 75%. IR (KBr, neat, cm−1): 2922, 2850, 1620, 1461, 1180, 1024, 751, 525. 

UV-Vis (CHCl3), λmax, nm: 254, 314, 429. 1H NMR (500 MHz, CDCl3:CS2 1:5) δ 1.00 (t, J 7 

Hz, 3H, CH3), 1.2–1.28 (m, 2H, CH2), 1.44–1.49 (m, 3CH, 2CH2), 1.56–1.63 (m, 1H, CH2), 

1.67–1.74 (m, 2H, CH2), 1.86–1.90 (m, 1H, CH2), 1.95–2.03 (m, 3H, 2CH2), 2.30–2.37 (m, 2H, 

CH2), 2.80–2.90 (m, 2H, CH2), 3.54–3.57 (m, 1H, CH), 8.41 (s, 1H, CH). 13C NMR (125 MHz, 

CDCl3:CS2 1:5) δ 14.1, 23.6, 26.5, 29.9, 31.3, 33.4, 38.4, 41.5, 66.0, 81.2, 122.7, 139.6, 139.9, 

141.3, 141.4, 141.5, 141.9, 142.3, 142.4, 142.7, 142.83, 142.88, 143.1, 143.2, 144.4, 144.6, 144.9, 

145.3, 145.4, 145.5, 145.7, 145.8, 146.3, 146.40, 146.44, 146.5, 146.6, 146.7, 146.9, 147.8, 154.64. 

HRMS (MALDI TOF), m/z: calcd. for C72H21N3 927.1788; found 928.1783. 

1-Butyl-2-(4′-isoindol-1,3-dione-1H-1′,2′,3′-triazol-1′-yl)(C60-Ih)[5,6]fullerene 4 

Brown powder; yield 78%. IR (KBr, neat, cm−1): 3417, 2951, 2852, 1712, 1385, 1033, 720, 526. 

UV-Vis (CHCl3), λmax, nm: 257, 327, 426. 1H NMR (500 MHz, CDCl3:CS2 1:5) δ 0.98 (t, J 7 

Hz, 3H, CH3), 1.28 (s, 2H, CH2), 1.44–1.50 (m, 1H, CH), 1.98–2.03 (m, 2H, CH2), 2.30–2.38 

(m, 2H, CH2), 2.80–2.88 (m, 2H, CH2), 3.10 (t, 2H, CH2, J = 5.0 Hz), 7.7–7.82 (m, 1H, CH), 

7.90–7.94 (m, 1H, CH), 8.62 (s, 1H, CH). 13C NMR (125 MHz, CDCl3:CS2 1:5) δ 14.1, 23.3, 

28.6, 31.3, 37.2, 38.2, 56.4, 66.0, 81.3, 123.3, 124.8, 132.2, 134.0, 137.8, 138.2, 139.5, 139.9, 

141.8, 141.9, 142.4, 142.5, 142.8, 142.8, 143.1, 143.2, 144.9, 145.4, 145.7, 145.9, 146.2, 146.3, 

146.4, 146.6, 146.8, 147.8, 148.4, 155.6. HRMS (MALDI TOF/TOF), m/z: calcd. for 

C78H21N3O2 1032.0541; found 1032.0548. 

4. Conclusions 

For the first time we synthesized fullerenyltriazoles by the reaction of azidofullerene 

with terminal acetylenes, in which the heterocyclic fragment is directly attached to the 

fullerene core. Furthermore, it was demonstrated that the synthesized fullerene adducts 

exhibit a high antitumor potential in relation to K562, U937 and Jurkat tumor cells. 
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