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Abstract: Median lethal concentration values are commonly used to express the relative risk related 

to the acute toxicity of chemicals. In this paper, we considered rat and mouse acute toxicity (LD50) 

data of organophosphorous compounds (OPs) with diverse structures. Interspecies QSTTR (quan-

titative structure-toxicity–toxicity relationships) models were developed to predict the mouse oral 

acute toxicity using the multiple linear regression (MLR) approach. Descriptors were calculated 

from the OPs structures optimized by molecular mechanics calculations. Model validation was per-

formed using several statistical parameters. The results suggest the suitability of the developed 

QSTTR models to reliably predict the acute toxicity of OPs. 
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1. Introduction 

Organophosphate compounds (OPs) are commonly used as pesticides and were de-

veloped as nerve gases for chemical wars [1–3]. OPs have been utilized as insecticides, 

helminthicides, ascaricides, nematocides, and to a lesser degree as fungicides and herbi-

cides for several decades. Despite their worldwide application as crop protection agents, 

their wide usage has led to many intoxications of nontarget species, including human 

death. The inhibition of the enzyme acetylcholinesterase is usually the cause of the OPs 

acute mammalian toxicity [4]. In addition, other OP life-threatening toxicities have been 

observed, which are not always related to the acetylcholinesterase inhibition. 

The oral acute toxicity assessment is very important because the oral route is a very 

common, convenient, safe, and inexpensive route of drug administration [5]. The im-

portance of predicting rat acute oral toxicity is closely related to the knowledge of biolog-

ical activity and mechanism of a potential drug, as well as its hazard identification and 

risk management [6]. This toxicity is often measured using the 50% lethal dose (LD50), the 

amount of chemical that is expected to cause death in 50% of treated animals in a period 

of time. These expensive and time-consuming studies use large numbers of animals. 

Information about toxicity to multiple species is important to assess the threat, and 

for the protection of ecological populations. When chemicals cause toxicity in a different 

genus of living organisms following a similar mechanistic path, there might be a correla-

tion existing between the toxicities of these organisms [7]. Because such data is available 

for a limited number of species, to address these data gaps in species, alternative methods 

such as in silico models have been accepted to determine the acute toxicity. 
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Quantitative Structure-Activity/Toxicity Relationships (QSAR/QSTR) correlate the 

activity/toxicity of chemicals to their physicochemical properties and structural de-

scriptors. They may reduce or even replace the need for animal testing and are most pow-

erful when applied in a mechanistic hypothesis [8]. It is considered that as acute toxicity 

(LD50) is related to whole body information it will be difficult to model it and may require 

knowledge on metabolism, bioaccumulation, excretion, etc. In addition, all data must be 

reliable, preferably obtained for the same sex and species [9]. 

To reduce the in vivo use of animals in toxicology, substitute species are useful in the 

risk assessment of chemicals [10]. They are based on results obtained using direct or indi-

rect relationships from different toxicity tests [11,12]. 

Interspecies quantitative structure–toxicity–toxicity (QSTTR) modeling allows the 

prediction of toxicity to several other species using the experimental toxicity values to one 

species [13]. This type of modeling can thus promote a reduction in the use of higher or-

ganisms and understanding of the mechanism of toxic action. 

The interspecies QSTTRs extrapolate the data for one toxicity endpoint to those for 

another toxicity endpoint and can be used to determine the species-specific toxicity of a 

chemical [10,13–15]. 
Using the underlying principle of taxonomic relationship, the development of pre-

dictive quantitative structure–toxicity–toxicity relationship (QSTTR) models allows pre-

dicting the toxicity of chemicals to a particular species using available experimental tox-

icity data towards a different species. Such studies may employ, along with the available 

experimental toxicity data to a species, molecular features and physicochemical properties 

of chemicals as independent variables for prediction of the toxicity profile against another 

closely related species [16]. 

In this paper, we considered experimental rat and mouse acute toxicity data (LD50 

values) of a series of 76 organophosphorous compounds (OPs) with diverse structures 

(Table 1). Interspecies QSTTR models were developed to predict the oral acute toxicity to 

a particular species using available experimental data towards a different species. The 

multiple linear regression approach was applied to extrapolate the known toxicity of 

chemicals of interest to species missing toxicity data. OP structures were optimized em-

ploying molecular mechanics calculations using the MMFF94s force field. Structural pa-

rameters were calculated based on the optimized structures. The mouse acute toxicity data 

of OPs was related to the rat acute toxicity using the multiple linear regression (MLR) 

approach. Additional descriptors improved the fitting quality of the MLR models. Model 

validation was performed using several statistical parameters to test the model predictive 

power. The results suggest the suitability of the developed QSTTR models to reliably pre-

dict the acute toxicity of organophosphorous chemicals. 

Table 1. The organophosphorous structures, the pLD50 values derived from experimental oral acute toxicity data of mouse 

and rat, CAS number, the predicted oral mouse pLD50 values model, and descriptors used in the best MLR1 model. 

No Structure 

Experi-

mental 

pLD50 

(Oral 

Mouse, 

mole/kg) 

Experi-

mental 

pLD50 

(Oral Rat, 

mole/kg) 

CAS 

Predicted 

pLD50 

(Oral 

Mouse, 

MLR1) 

Mor06m TPSA(NO) Mor26m 

1 * 

 

2.90 2.42 30560-19-1 2.82 1.069 55.4 0.119 



Chem. Proc. 2021, 3, x FOR PEER REVIEW 3 of 16 
 

 

2 

 

3.63 3.95 1757-18-2 3.64 4.117 27.69 −0.127 

3 * 

 

4.57 4.66 86-50-0 4.50 0.635 66.24 −0.415 

4 

 

2.41 3.17 741-58-2 3.03 3.657 64.63 −0.574 

5 * 

 

2.11 2.36 2104-96-3 2.33 2.746 27.69 −0.412 

6 

 

2.63 2.47 126-22-7 2.66 5.226 61.83 0.198 

7 

 

3.58 3.86 95465-99-9 3.95 0.352 26.3 0.242 

8 ** 

 

3.20 4.70 786-19-6  1.971 18.46 −0.202 

9 

 

3.74 4.56 470-90-6 4.20 3.927 44.76 −0.171 

10 

 

3.77 3.63 2921-88-2 3.34 5.254 40.58 −0.2 

11 * 

 

2.20 2.25 5598-13-0 2.23 4.958 40.58 −0.215 
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12 * 

 

4.11 4.45 56-72-4 4.16 3.3 57.9 −0.297 

13 

 

3.90 3.91 7700-17-6 4.01 1.554 71.06 −0.032 

14 * 

 

2.53 3.05 2636-26-2 3.16 2.025 51.48 −0.119 

15 

 

3.61 3.32 78-48-8 3.59 −0.997 17.07 0.328 

16 

 

4.52 5.18 8065-48-3 4.98 2.493 35.53 0.413 

17 
 

3.95 3.49 8022-00-2 3.63 2.357 35.53 0.44 

18 

 

4.25 3.66 333-41-5 3.64 2.779 53.47 −0.046 

19 

 

2.95 3.02 2463-84-5 3.06 2.854 73.51 −0.452 

20 

 

3.56 4.11 62-73-7 3.80 4.86 44.76 −0.117 

21 

 

4.33 4.26 141-66-2 4.25 3.276 65.07 0.206 

22 

 

3.58 3.06 60-51-5 3.27 0.159 47.56 −0.115 

23 * 

 

3.41 4.36 78-34-2 4.19 2.259 55.38 −0.185 

24 

 

4.76 5.02 298-04-4 4.69 1.296 18.46 0.006 
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25 

 

4.42 4.66 2104-64-5 4.45 1.519 64.28 −0.386 

26 

 

1.70 1.63 16672-87-0 2.13 2.265 57.53 0.155 

27 

 

3.98 4.47 563-12-2 4.21 1.299 36.92 −0.312 

28 

 

2.83 2.21 38260-54-7 2.62 1.709 62.7 0.046 

29 

 

4.53 4.53 52-85-7 4.10 4.272 65.07 −0.572 

30 

 

4.13 4.58 22224-92-6 4.22 3.577 47.56 −0.254 

31 

 

3.08 3.04 122-14-5 3.23 1.626 73.51 −0.253 

32 

 

3.50 3.19 55-38-9 3.24 2.117 27.69 0.107 

33 * 

 

4.25 4.36 944-22-9 4.09 0.675 9.23 −0.163 

34 

 

3.49 3.01 2540-82-1 3.20 0.689 55.84 −0.205 

35 * 

 

3.49 3.70 98886-44-3 3.76 2.941 46.61 0.29 

36 

 

2.64 2.05 77182-82-2 2.75 1.614 103.45 0.203 
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37 

 

2.14 1.54 1071-83-6 2.26 1.958 106.86 0.012 

38 * 

 

3.97 4.07 42509-80-8 3.97 2.877 58.4 −0.074 

39 

 

3.58 4.21 25311-71-1 3.88 3.176 56.79 −0.558 

40 

 

3.24 2.44 121-75-5 2.84 0.065 71.06 −0.251 

41 

 

4.39 4.48 950-10-7 4.11 5.281 47.89 −0.04 

42 

 

4.00 4.27 10265-92-6 4.29 1.373 52.32 0.133 

43 

 

4.08 4.18 950-37-8 4.10 1.539 62.58 −0.26 

44 * 

 

4.17 4.64 298-00-0 4.57 1.592 73.51 −0.142 

45 

 

3.45 3.45 953-17-3 3.30 1.83 18.46 −0.227 

46 

 

4.75 4.87 7786-34-7 4.75 3.042 71.06 0.115 
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47 * 

 

4.17 4.45 6923-22-4 4.40 3.444 73.86 0.151 

48 

 

3.23 3.62 300-76-5 3.43 2.549 44.76 −0.431 

49 * 

 

4.05 3.85 1113-02-6 4.03 1.321 64.63 0.187 

50 

 

4.39 3.91 301-12-2 4.00 2.645 52.6 0.327 

51 

 

5.56 5.18 311-45-5 4.98 3.204 90.58 −0.132 

52 ** 

 

3.13 5.16 56-38-2  1.716 73.51 −0.178 

53 * 

 

3.37 3.65 2597-03-7 3.63 0.859 44.76 −0.27 

54 

 

5.06 5.42 298-02-2 4.98 1.123 18.46 −0.092 

55 

 

3.70 3.64 2310-17-0 3.51 0.394 53.6 −0.728 

56 

 

2.89 3.31 115-78-6 2.94 5.51 0 −0.023 

57 * 

 

4.09 3.54 732-11-6 3.70 −0.344 57.53 −0.204 
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58 

 

4.70 4.57 13171-21-6 4.45 2.695 65.07 −0.006 

59 

 

2.45 3.00 14816-18-3 3.08 1.994 63.84 −0.376 

60 

 

3.03 3.04 24151-93-7 3.06 2.041 38.77 −0.191 

61 * 

 

3.50 3.38 23505-41-1 3.44 2.436 56.71 −0.074 

62 

 

2.41 2.39 29232-93-7 2.67 2.257 56.71 −0.034 

63 

 

3.36 3.02 41198-08-7 2.99 3.894 35.53 0.002 

64 

 

3.76 3.65 31218-83-4 3.51 2.805 56.79 −0.401 

65 

 

3.16 2.90 119-12-0 3.02 2.433 62.58 −0.244 

66 

 

3.60 4.06 13593-03-8 3.98 2.744 53.47 −0.003 



Chem. Proc. 2021, 3, x FOR PEER REVIEW 9 of 16 
 

 

67 

 

2.21 2.71 299-84-3 2.45 3.929 27.69 −0.645 

68 

 

4.17 4.11 3689-24-5 3.90 3.596 46.15 −0.094 

69 

 

2.82 3.70 35400-43-2 3.52 1.671 18.46 −0.186 

70 
 

3.32 2.67 3383-96-8 2.80 4.163 55.38 0.058 

71 

 

4.99 5.76 107-49-3 5.52 4.48 80.29 0.365 

72 

 

4.92 5.26 13071-79-9 4.83 1.284 18.46 −0.124 

73 

 

2.42 2.88 22248-79-9 2.65 6.699 44.76 −0.215 

74 

 

3.82 3.79 640-15-3 3.69 1.159 18.46 −0.027 

75* 

 

2.93 2.76 52-68-6 2.79 5.269 55.76 0.034 

76 

 

3.92 4.35 327-98-0 3.63 4.043 18.46 −0.859 

77 *** 

 

- 2.64 2591-66-4 2.60 3.29 44.48 −0.41 
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78 *** 

 

- 3.03 2633-54-7 2.81 3.767 27.69 −0.393 

79 *** 

 

- 3.50 5745-14-2 3.17 3.196 9.23 −0.325 

80 *** 

 

- 4.20 7260-35-7 3.80 3.435 18.46 −0.219 

81 *** 

 

- 4.08 1593-27-7 3.69 3.065 18.46 −0.303 

* Test compounds included in the MLR models. ** Outliers detected by the MLR1 model. *** External set. 

2. Methods 

2.1. Definition of Target Property and Structural Descriptors 

The experimental mouse, respectively rat oral acute toxicity (LD50) (mg/kg body 

weight), molar converted to pLD50 values, were taken from the ChemIDplus web search 

system (https://chem.nlm.nih.gov/chemidplus/, accessed on) and were considered as the 

dependent, respectively independent variables for 76 organophosphorus compounds (Ta-

ble 1). 

The OP structures were pre-optimized using the MMFF94 molecular mechanics force 

field included in the Omega (Omega v.2.5.1.4, OpenEye Scientific Software, Santa Fe, NM. 

http://www.eyesopen.com, accessed on) software [17,18] after curation of salts. Following 

parameters were used during the conformer ensemble generation: the maximum number 

of conformers per compound set of 400 and an RMSD value of 0.5 Å .  

Structural parameters were further calculated using the minimum energy conform-

ers by the DRAGON (Dragon Professional 5.5, 2007, Talete S.R.L., Milano, Italy) and In-

stantJChem (Instant JChem (2020) version 20.15.0, Chemaxon, http://www.che-

maxon.com, accessed on) software.  

An external set of 5 chemicals without experimental oral mouse acute toxicity data 

(Table 1) were collected from the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/, 

accessed on). These compounds were chosen based on their structural similarity with the 

lowest toxic organophosphorous compound included in the above series of 76 OPs. 

2.2. Multiple Linear Regression Approach and Model Validation 

The multiple linear regression (MLR) approach [19] was employed to relate the 

mouse oral pLD50 values with the rat oral pLD50 values and calculated structural de-

scriptors, using the QSARINS v. 2.2.4 program [20,21]. The genetic algorithm with leave-

one-out cross-validation correlation coefficient was used for variable selection, as con-

strained function to be optimized, a mutation rate of 20%, the population size of 10 and 

500 iterations. 

The dataset was divided randomly into training and test (25% of the total number of 

compounds) sets. Following compounds: 1, 3, 5, 11, 12, 14, 23, 33, 35, 38, 44, 47, 49, 53, 57, 

61, and 75 were included in the test set (Table 1). 
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For internal validation several measures of robustness were employed: Y-scrambling 

[22], adjusted correlation coefficient (
2

adjr ), and q2 (leave-one-out, 
2

LMOq , and leave-more-

out, 
2

LMOq ) cross-validation coefficient. In the Y-scrambling test, the dependent variable 

is arbitrarily mixed and a model is built using the same X matrix of molecular descriptors. 

The obtained MLR models (after 2000 randomizations) must have minimal r2 (correlation 

coefficient) and q2 (cross-validation coefficient) values [23]. 

The model overfit was checked using the Y-randomization test [23] and by compar-

ing the root-mean-square errors (RMSE) and the mean absolute error (MAE) of the train-

ing and validation sets [24]. 

The applicability domain was checked using the Williams plot (hat diagonal values 

versus standardized residuals) for the training and prediction chemicals to find out the 

outliers and leverage compounds and the Insubria graph for chemicals without experi-

mental data [25]. 

Several criteria were used to test the predictive model power: 
2

1FQ  [26], 
2

2FQ  [27], 
2

3FQ  [28], the concordance correlation coefficient (CCC) [29] (having the thresholds val-

ues higher than 0.85, [30]), and the predictive parameter 
2

mr  (with the lowest threshold 

value of 0.5) [31]. 

The Multi-Criteria Decision Making (MCDM) validation criterion [20,32] is used to 

summarize the performance of MLR models. To every validation criteria, a desirability 

function is associated, and MCDM has values between 0 (the worst) and 1 (the best). 

3. Results and Discussion 

The autoscaling method was employed for normalizing the data: 

m

mmj

mj
S

XX
XT

−
=  (1) 

where for each variable m, XTmj and Xmj are the j values for the m variable after and before 

scaling, respectively, mX is the mean, and Sm is the standard deviation of the variable. 

The variables contained in the MLR models were selected using the genetic algo-

rithm. The statistical (fitting and predictivity) results are included in Tables 2–4. Two com-

pounds (18 and 52) were detected as outliers, having standardized residual values greater 

than 2.5 standard deviation units, and were not included in the final MLR models. 

The ‚MCDM all’ scores, based on the fitting, cross-validated and external criteria 

were considered for choosing the best MLR models. 

Table 2. Fitting and cross-validation statistical results of the MLR models.*. 

Model 
2

trainingr  
2

LOOq  
2

LMOq  
2

adjr  RMSEtr MAEtr CCCtr 
2

scrr  
2

scrq  SEE F 

MLR1 0.850 0.819 0.810 0.839 0.316 0.260 0.919 0.072 −0.119 0.33 73.93 

MLR2 0.833 0.811 0.805 0.823 0.334 0.272 0.909 0.053 −0.098 0.35 87.86 

MLR3 0.820 0.801 0.795 0.814 0.346 0.284 0.901 0.035 −0.076 0.36 123.20 

MLR4 0.800 0.786 0.782 0.796 0.365 0.301 0.889 0.017 −0.056 0.37 219.85 

* 
2

trainingr —correlation coefficient; 
2

LOOq —leave-one-out correlation coefficient; —leave-more-out correlation co-

efficient; 
2

adjr —adjusted correlation coefficient; RMSEtr-root-mean-square errors; MAEtr-mean absolute error; CCCtr-the 

concordance correlation coefficient; 
2

scrr  and 
2

scrq —Y-scrambling parameters; SEE-standard error of estimates; F-Fischer 

test. 

  

2

LMOq
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Table 3. The model predictivity results*. 

Model 2

1FQ  
2

2FQ  
2

3FQ  RMSEext MAEext CCCext 

MLR1 0.826 0.822 0.857 0.309 0.223 0.910 

MLR2 0.814 0.810 0.847 0.319 0.238 0.904 

MLR3 0.780 0.775 0.819 0.347 0.273 0.875 

MLR4 0.795 0.790 0.831 0.336 0.262 0.878 

* 
2

1FQ ; 
2

2FQ ;
2

3FQ —external validation parameters; RMSEext—root-mean-square errors; MAEext—mean absolute error; 

CCCext-the concordance correlation coefficient. 

Table 4. The ‘MCDM all’ score values, 
2

mr  predictivity parameter, and descriptors included in the MLR models. 

Model 
2

mr  MCDM All Descriptors Included in the MLR Models * 

MLR1 0.827 0.851 pLD50 mouse, Mor06m, TPSA(NO), Mor26m 

MLR2 0.851 0.842 pLD50 mouse, Mor06m, TPSA(NO) 

MLR3 0.749 0.825 pLD50 mouse, R4v+ 

MLR4 0.758 0.822 pLD50 mouse 

* pLD50 mouse—experimental oral mouse acute toxicity (mole/kg); Mor06m—3D-MoRSE—signal 06/weighted by atomic 

masses (3D-MoRSE descriptor); Mor26m—3D-MoRSE—signal 26/weighted by atomic masses (3D-MoRSE descriptor); 

TPSA(NO)—topological polar surface area using N,O polar contributions (molecular properties); R4v+—R maximal auto-

correlation of lag 4/weighted by atomic van der Waals volumes (GETAWAY descriptors). 

For the reliability of the best MLR1 model, the experimental versus predicted pLD50 

values, and Y-scramble plots are presented in Figures 1 and 2, respectively. 

  

Figure 1. Plots of experimental versus predicted pLD50 values for the MLR1 model predicted by the model (left) and by 

the leave-one-out (right) cross-validation approach (yellow circles-training compounds, blue circles-test compounds). 

In the y-scrambling test performed for the MLR models, a significantly low scram-

bled r2 (
2

scrr ) and cross-validated q2 (
2

scrq ) values were obtained for 2000 trials. Figure 2 

shows that in the case of all the randomized models, the values of 
2

scrr  and 
2

scrq  for the 

MLR1 model were < 0.5 (
2

scrr /
2

scrq of 0.072/−0.119). The low calculated 
2

scrr  and 
2

scrq val-

ues indicate no chance correlation for all MLR chosen models (Table 2). 
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Figure 2. Y-scramble plots for the MLR1 model. 

The Williams plot (standardized residuals versus leverages, with the leverage thresh-

old h* = 0.263 for the MLR1 model), in the range of ±2.5σ, was used to verify the domain 

applicability. All compounds in the dataset are within the applicability domain of the 

MLR1 model, as presented in Figure 3. 

  

Figure 3. Williams plot predicted by the MLR1 model (left) and by the leave-one-out (right) cross-validation approach 

(yellow circles-training compounds, blue circles-test compounds). 

The selected descriptors included in the MLR1 best model are not intercorrelated, as 

presented in the correlation matrix from Table 5. 

Table 5. Correlation matrix of the descriptors included in the best MLR1 model, and their standard-

ized coefficients (Std. coeff.). 

 pLD50 Rat Oral Mor06m TPSA(NO) Mor26m Std. coeff. 

pLD50 rat oral 1.0000    0.931 

Mor06m 0.1866 1.0000   −0.121 

TPSA(NO) −0.2652 −0.0508 1.0000  0.126 
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Mor26m −0.2929 −0.3333 0.1990 1.0000 0.134 

Good correlations with the acute toxicity and predictive model power were notices 

for all MLR models. Closer values of the root-mean-square errors (RMSE) and the mean 

absolute error (MAE) of the training and validation sets were observed for the MLR2, 

MLR3, and MLR4 models. MLR1 model was considered being the best one according to 

several other statistical parameters of fitting and the ‘MCDM all’ score values. 

The best MLR1 model has three descriptors: two 3D-MorSE descriptors (Mor06m, 

which represents 3D-MoRSE-signal 06/weighted by atomic masses and Mor26m, which 

represents 3D-MoRSE-signal 26/weighted by atomic masses); and one molecular prop-

erty: TPSA(NO), which represents the topological polar surface area using N, O polar con-

tributions. The increase of the Mor06m descriptor values would lead to lower acute tox-

icity. Higher values of Mor26m and TPSA(NO) descriptor values raise the OP toxicity. 

To predict the mouse oral acute toxicity for OP chemicals without experimental data 

the best MLR1 model was applied to five external test compounds, found in the PubChem 

database, based on their structural similarity with the lowest known experimental OP 

mouse oral acute toxicity data of the 76 OPs. 

 

Figure 4. Insubria plot predicted by the MLR1 model (yellow circles-training compounds, blue cir-

cles-test compounds). 

The Insubria plot of the predicted pLD50 versus hat values indicates that the five ex-

ternal set compounds are included in the applicability domain of the set of 76 OP com-

pounds. The lowest predicted acute toxicity pLD50 values of the external set compounds 

77 and 78 were confirmed by all four MLR models (Tables 2–4). These compounds contain 

a thiophosphonate, respectively thiphosphate group attached to the 2,4,5-trichlorophenyl 

moiety. Their predicted LD50 values of 767.8 mg/kg, respectively 519.3 mg/kg, obtained by 

the MLR1 model, indicate a low oral mouse acute toxicity. 

4. Conclusions 

Interspecies quantitative structure-toxicity-toxicity relationships were developed us-

ing the multiple linear regression approach to model the oral mouse acute toxicity of a 

series of organophosphorous compounds. The OP structures were modeled using the 

MMFF94s force field. The experimental mouse oral acute toxicity data of OPs was related 

to the rat oral acute toxicity using the multiple linear regression (MLR) approach. Addi-

tionally calculated descriptors of the minimum conformers improved the fitting quality 
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of the MLR models. Good correlations and predictive models were obtained. Molecular 

properties and 3D-MorSE descriptors included in the best MLR model can be used for the 

prediction of missing mouse oral acute toxicity data, saving experimental time and 

money. Two OPs with known structure (which include three chlorine atoms attached to a 

phenyl group and a thiophosphonate/thiophosphate group), without mouse toxicity data, 

were found to have potential low oral acute toxicity for this species.  

Author Contributions: Conceptualization, S.F.T.; investigation, G.I. and A.B.; data curation, A.B.; 

validation, S.F.T.; writing—review and editing, S.F.T. and G.I. All authors have read and agreed to 

the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: This project was financially supported by Project 1.1 of the Coriolan Dragulescu 

Institute of Chemistry of the Romanian Academy. Access to the OpenEye Ltd., and Chemaxon Ltd. 

software are greatly acknowledged by the authors. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Katz, F.S.; Pecic, S.; Schneider, L.; Zhu, Z.; Hastings, A.; Luzac, M.; Macdonald, J.; Landry, D.W.; Stojanovic, M.N. New Thera-

peutic Approaches and Novel Alternatives for Organophosphate Toxicity. Toxicol. Lett. 2018, 291, 1–10. 

https://doi.org/10.1016/j.toxlet.2018.03.028. 

2. Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X.; 

et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health 

Study. Occup. Environ. Med. 2015, 72, 736–744. https://doi.org/10.1136/oemed-2014-102798. 

3. Sultatos, L.G. Mammalian toxicology of organophosphorus pesticides, J. Toxicol. Environ. Health Part A 1994, 43, 271–289. 

https://doi.org/10.1080/15287399409531921. 

4. Fukuto, T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Persp. 1990, 87, 245–254. 

https://doi.org/10.1289/ehp.9087245. 

5. Strickland, J.; Clippinger, A.J.; Brown, J.; Allen, D.; Jacobs, A.; Matheson, J.; Lowit, A.; Reinke, E.N.; Johnson, M.S.; Quinn, M.J., 

Jr.; et al. Status of acute systemic toxicity testing requirements and data uses by U.S. regulatory agencies. Regul. Toxicol. Phar-

macol. 2018, 94, 183−196. 

6. Minerali, E.; Foil, D.; Zorn, Ki.; Ekins, S. Evaluation of Assay Central Machine Learning Models for Rat Acute Oral Toxicity 

Prediction. ACS Sustain. Chem. Eng. 2020, 8, 16020–16027. https://doi.org/10.1021/acssuschemeng.0c06348. 

7. Kar, S.; Das, R.N.; Roy, K.; Leszczynski, J. Can Toxicity for Different Species be Correlated? The Concept and Emerging Appli-

cations of Interspecies Quantitative Structure-Toxicity Relationship (i-QSTR) Modeling. Int. J. Quant. Struct. -Prop. Relatsh. 2016, 

1, 23–51. https://doi.org/10.4018/IJQSPR.2016070102. 

8. Cronin, M.T. (Q)SARs to predict environmental toxicities: Current status and future needs. Environ. Sci. Processes Impacts 2017, 

19, 213–220. https://doi.org/10.1039/C6EM00687F. 

9. Cronin, M.T.D.; Dearden, J.C. QSAR in Toxicology. 2. Prediction of Acute Mammalian Toxicity and Interspecies Correlation. 

Quant. Struct. -Act. Relat. 1995, 14, 117-120. https://doi.org/10.1002/qsar.19950140202. 

10. Cronin, M.T.D. Biological read-across: Mechanistically based species-species and endpoint-endpoint extrapolations. In In Silico 

Toxicology: Principles and Applications, Cronin, M.T.D., Madden, J.C., Eds.; Royal Society of Chemistry: Cambridge, UK, 2010, 

pp. 446–477. 

11. Vermeire, T.G.; Baars, A.J.; Bessems, J.G.M.; Blaauboer, B.J.; Slob, W.; Muller, J.J.A. Toxicity Testing For Human Health Risk 

Assessment. In Risk Assessment of Chemicals, 2nd ed.; An Introduction; van Leeuwen, C.J., Vermeire, T.G., Eds.; Springer: Dor-

drecht, The Netherlands, 2007; pp. 227–280. 

12. Traas, T.P.; van Leeuwen, C.J. Ecotoxicological Effects. In Risk Assessment of Chemicals. An Introduction, 2nd ed.; van Leeuwen, 

C.J., Vermeire, T.G., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 281–356. 

13. Das, R.N.; Roy, K.; Popelier, P.L.A. Interspecies quantitative structure–toxicity–toxicity (QSTTR) relationship modeling of ionic 

liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus. Ecotoxol. Environ. Saf. 2015, 122, 497–520. 

https://doi.org/10.1016/j.ecoenv.2015.09.014. 

14. Cassani, S.; Kovarich, S.; Papa, E.; Roy, P.P.; van der Wal, L.; Gramatica, P. Daphnia and fish toxicity of (benzo)-triazoles: Vali-

dated QSAR models, and interspecies quantitative activity–activity modelling, J. Hazard. Mater. 2013, 258–259, 50–60. 

https://doi.org/10.1016/j.jhazmat.2013.04.025. 



Chem. Proc. 2021, 3, x FOR PEER REVIEW 16 of 16 
 

 

15. Furuhama, A.; Hasunuma, K.; Aoki, Y. Interspecies quantitative structure–activity–activity relationships(QSAARs) for predic-

tion of acute aquatic toxicity of aromatic amines and phenols. SAR QSAR Environ. Res. 2015, 26, 301–323. 

https://doi.org/10.1080/1062936X.2015.1032347. 

16. Roy, K.; Das, R.N.; Popelier, P.A. Predictive QSAR modelling of algal toxicity of ionic liquids and its interspecies correlation 

with Daphnia toxicity. Environ. Sci. Pollut. Res. 2015, 22, 6634–6641. https://doi.org/10.1007/s11356-014-3845-0. 

17. Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: Algorithm 

and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 

2010, 50, 572–584. https://doi.org/10.1021/ci100031x. 

18. Hawkins, P.C.D.; Nicholls, A. Conformer generation with OMEGA: Learning from the data set and the analysis of failures. J. 

Chem. Inf. Model. 2012, 52, 2919–2936. https://doi.org/10.1021/ci300314k. 

19. Wold, S.; Dunn III, W.J. Multivariate quantitative structure-activity relationships (QSAR): Conditions for their applicability. J. 

Chem. Inf. Comput. Sci. 1983, 23, 6–13. https://doi.org/10.1021/ci00037a002. 

20. Chirico, N.; Sangion, A.; Gramatica, P.; Bertato, L.; Casartelli, I.; Papa, E.. QSARINS-Chem standalone version: A new platform-

independent software to profile chemicals for physico-chemical properties, fate, and toxicity. J. Comput. Chem. 2021, 42, 1452–

1460. https://doi.org/10.1002/jcc.26551. 

21. Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and 

validation of QSAR MLR models. J. Comput. Chem. 2013, 34, 2121–2132. https://doi.org/10.1002/jcc.23361. 

22. Todeschini, R.; Consonni, V.; Maiocchi, A. The K correlation index: Theory development and its application in chemometrics. 

Chemom. Intell. Lab. 1999, 46, 13–29. https://doi.org/10.1016/S0169-7439(98)00124-5. 

23. Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wold, S. Multi and megavariate data analysis: Principles and applications. 

Umetrics AB: Umea, Sweden, 2001; pp. 92–97, 489–491. 

24. Goodarzi, M.; Deshpande, S.; Murugesan, V.; Katti, S.B.; Prabhakar, Y.S. Is Feature Selection Essential for ANN Modeling? 

QSAR Comb. Sci. 2009, 28, 1487–1499. https://doi.org/10.1002/qsar.200960074. 

25. Gramatica, P. Principles of QSAR Modeling: Comments and Suggestions from Personal Experience. Int. J. Quant. Struct. -Prop. 

Relatsh. 2020, 5, 1–37. https://doi.org/10.4018/IJQSPR.20200701.oa1. 

26. Shi, L.M.; Fang, H.; Tong, W.; Wu, J.; Perkins, R.; Blair, R.M.; Branham, W.S.; Dial, S.L.; Moland, C.L.; Sheehan, D.M. QSAR 

models using a large diverse set of estrogens. J. Chem. Inf. Model. 2001, 41, 186–195. https://doi.org/10.1021/ci000066d. 

27. Schüürmann, G.; Ebert, R.U.; Chen, J.; Wang, B.; Kühne, R. External validation and prediction employing the predictive squared 

correlation coefficient test set activity mean vs training set activity mean. J. Chem. Inf. Model. 2008, 48, 2140–2145. 

https://doi.org/10.1021/ci800253u. 

28. Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the definition of the Q2 parameter for QSAR validation. J. Chem. Inf. 

Model. 2009, 49, 1669–1678. https://doi.org/10.1021/ci900115y. 

29. Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation 

Criteria and Proposal of Using the Concordance Correlation Coefficient. J. Chem. Inf. Model. 2011, 51, 2320–2335. 

https://doi.org/10.1021/ci200211n. 

30. Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different 

Validation Criteria and the Need for Scatter Plot Inspection. J. Chem. Inf. Model. 2012, 52, 2044−2058. 

https://doi.org/10.1021/ci300084j. 

31. Roy, K.; Mitra, I. On the Use of the Metric 
2

mr  as an Effective Tool for Validation of QSAR Models in Computational Drug 

Design and Predictive Toxicology. Mini-Rev. Med. Chem. 2012, 12, 491−504. https://doi.org/10.2174/138955712800493861. 

32. Keller, H.R.; Massart, D.L.; Brans, J.P. Multicriteria decision making: A case study. Chemom. Intell. Lab. Syst. 1991, 11, 175–189. 

https://doi.org/10.24048/ams3.no1.2014-109.. https://doi.org/ 


