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Abstract: Various copper complexes were prepared (CuCl(phen), CuCl(bipy), CuCl(neocu), 

CuCl(BPA), [CuCl(OH)(TMEDA)]2) and tested in aerobic room temperature oxidation of p-cresol. 

The complexe [CuCl(OH)(TMEDA)]2 was found to be the more efficient and was used in o,o and 

p,p coupling of various phenols and in the formation of quinones under aerobic conditions. The 

dimerization of substituted naphthols was also investigated. This C-H activation with formation of 

one C-C bond and one harmless molecule of water with air as oxidant at room temperature repre-

sents a biomimetic model of enzyme Laccase. 
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1. Introduction 

Many secondary metabolites produced by plants result from the oxidative coupling 

of phenols as demonstrated by the schools of Barton and Battersby [1]. 

 
Figure 1. Some natural products formed by oxidative coupling of phenols. 
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Phenols are oxidized by air (aerobic oxidation) or hydrogen peroxide in the presence 

of oxidases which are enzymes containing copper [2], iron or vanadium in their catalytic 

site. The reactions consist in the oxidation of aromatic CH bond with the formation of C-

C and/or C-O bonds (aromatic CH and phenol) along side hydroxylation and subsequent 

oxidation to quinone. 

 

Scheme 1. Different o-o, p-p and o-p couplings of phenol. 

Pummerer was a pioneer in the study of the oxidation of phenols under stoichiomet-

rically conditions by iron III complexes (FeCl3, K4Fe(CN)6). Barton who have used these 

reactions in biomimetic syntheses of many natural products [1,3,4], has suggested that 

these reactions were explained by monoelectronic transfers leading to a phenoxyl radical 

whose mesomeric forms could then react to conduct to dimers. 

 
Figure 2. Phenoxy radical and its mesomeric forms. 

 

This Barton hypothesis leads to an explanation, although in fact it seems that the rad-

icals (or radical-ions) or equivalent organometallic species are involved in a restricted 

space (solvent cage, dimer) to observe these dimerisations and not classical free radicals. 

The most studied oxidases in the oxidation of phenols are the Laccase and Tyrosi-

nase, enzymes containing copper atoms in their active site. Oxidations by copper com-

plexes are well documented. 

2. Discussion 

First, we have prepared copper complexes and an iron (III) complex containing ni-

trogen ligands, which are hard ligands according to the Pearson definition, therefore not 

very oxidizable and stabilizing the high degree of oxidation of the metal. 
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3. Choice of a Catalyst 

The complexes displaying bipyridine, phenanthroline, neocuproine, and propan-1,3-

diamine ligands were obtained by simple complexation of cupric chloride. On the other 

side, the [CuCl(OH)TMEDA]2 described by Koga, was prepared from cuprous chloride, 

as the polyethylenimine cuprous chloride complex (PEI). 

 
Figure 3. Stuctures of some copper complexes. 

Finally for the tested soft we have prepared the complex of iron (III) 

(Fe(DMF)3Cl)FeCl4. 
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We have tested these complexes in the aerobic oxidation of paracresol in ethanol un-

der both catalytic and aerobic (air oxidation) conditions. Ethanol was chosen as a green 

solvent, although it can also oxidize in this reaction. The reaction was carried out at room 

temperature in air by simple stirring in the absence of light. As the oxidations take place 

very slowly, we analyzed the products formed after 120 h. A white reaction (without cat-

alyst) have shown that no oxidative coupling of cresol occurs in the absence of a catalyst. 

 

Oxidative conditions: 

Phenol/Cu (100/8) 

Phenol/Fe (100/8) room temperature (20 °C), EtOH, 120 h. 

Complexe  

CuCl(OH).TMEDA Yield (%) 

Cu(I)/PEI 31 

CuCl(phen) 17 

CuCl(neocup) 39 

CuCl(bipy) 9 

CuCl2- Bis(1,3- prdia) 41 

[Fe(DMF)3Cl][FeCl4] 63 

Along with the coupling products (polycresols), traces of oxidation products are 

found which have not been identified. The results are reported in Table 1. Polycresols 

were identified by NMR and mass spectroscopy. 

The iron complex appears to be active as a catalyst, but since it is not very stable and 

has led to unclear products, further studies have been abandoned. The Koga complex, 

[CuCl(OH)TMEDA]2 dimer seems to be the most efficient, so we have selected it with the 

CuCl complex (PEI) for the continuation of our work. 

Polycresols were analyzed by HPLC / mass spectroscopy and a distribution with n = 

2 to 5 was found. Besides the coupling products resulting from the formation of a C-C 

bond, there are oxidation products leading to quinones. 

The ortho-ortho coupling has been studied with phenols whose para position is sub-

stituted or heavily hindered. The products obtained by aerobic oxidation in ethanol in the 

presence of [CuCl(OH) TMEDA]2 as a catalyst are reported in Table A. 
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Phenol/Cu = 100/8, ethanol, 21°C, 96 h. 

The para-para coupling was investigated under the same experimental conditions 

with the phenols whose ortho positions are substituted. It is noteworthy that the electron 

donor groups (OR or R) promote the oxidation reaction while the electron withdrawing 

groups (COOR, NO2) have a negative effect. 
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_________________________________________________________________________________ 

Phenol / Cu (100 / 8), 21°C, EtOH, 96 h. 

4. Oxidation in the Presence of NHPI 

N-hydroxyphthalamide (NHPI) has been used in oxidation reaction as a source of N-

oxyl radical which promotes some monoelectronic oxidation. 

 
The use of NHPI is well documented [5]. We have studied the oxidation of 2,6-di-

methoxyphenol in the presence of NHPI under different conditions affording 2,6-di-

methoxyquinone, and the best result was achieved in the non-protic solvent, acetonitrile. 

In general, NHPI inhibits C-C couplings in favor of oxidation to quinone. 

The highly oxidizable pyrogallol phenol in the presence of [CuCl(OH)TMEDA]2 have 

been converted into Purpurogallin, which is also the oxidase product of pyrogallol. The 
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reaction is very clean and constitutes a good synthesis of purpurogallin under green con-

ditions. 

 

Phenol/Cu/NHPI = 100/8/10, 21°C, 96 h. 

Solvent Temperature (°C) Yield (%) 

EtOH 21 16 

EtOH 70 27 

CH3CN 21 32 

CH3CN 70 92 

5. Purpurogallin 

Oxidation at room temperature with the formation of carbon dioxide and water as a 

by-product. This reaction also shows that [CuCl(OH)TMEDA ]2 is a model for oxidase [6]. 

 

Catalyst Solvent T (°C) Yield (%) 

CuCl(OH)TMEDA a EtOH 20 43 

Cu(I)/PEI b EtOH 20 0 

CuCl(OH)TMEDA / NHPI c CH3CN 70 0 

6. Binaphthols 

The oxidation of 2-naphthol under aerobic conditions [7] in the presence of 

[CuCl(OH)TMEDA]2 furnishes binaphthol. here we have extended our studies to substi-

tuted 2-naphthols 

 

Catalyst Solvent T (°C) Yield (%) 

CuCl(OH)TMEDA 
a
 EtOH 21 86 

CuCl(OH)TMEDA / NHPI 
b
 CH3CN 70 43 

Cu(I)/PEI 
c
 EtOH 21 77 

CuCl2(phen) 
a
 EtOH 21 29 
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CuCl2(neocup) 
a
 EtOH 21 31 

Conditions: [a] naphthol/Catalysor (100/8), 96 h. [b] naphthol /Cu/NHPI (100/8/10), 96 h. [c] naph-

thol/Cu (100/3.75) (1.5 mL), 96 h. 

The examples are summarized in Table. The binaphthols obtained here are on a ra-

cemic form. Moreover, binaphthols are very important in asymmetric synthesis. 

 

________________________________________________________________________________________________________

 

Conditions: [a] naphthol/Cu (100/8), 21 °C, EtOH, [b] naphthol /Cu/NHPI (100/8/10), 70°C, CH3CN, [c] naphthol /Cu 

(100/3.75), (1.5 mL), EtOH, 21 °C. 

7. Case of Alkylidenenaphthol 

We have shown that methylenedinaphthol aerobically oxidizes at room temperature 

by spiraling, creating a C-C bond and de-aromatization of one of the aromatic rings [8]. 

 
naphtol/Cu (100/8), 21°C, 48 h. 
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