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Abstract: This study describes the development of a quantitative structure-property relationship to 

predict the retention index of volatile and semi-volatile compounds identified in Arabica coffee 

samples from different geographical origins. The analytical method utilized rapid headspace solid-

phase microextraction (HSSPME)-gas chromatography-time-of-flight mass spectrometry (GC-

TOFMS) data measured in the divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 

fiber. A total of 102 molecules were optimized with the PM6/ZDO level of theory, in order to calcu-

late several molecular descriptors. The ordinary least squares were coupled to the genetic algo-

rithms supervised variable subset selection to find the best three descriptors. For model validation, 

the dataset was split into a training set (70%) and a test set (30%). The quality of the model was 

evaluated by means of the coefficient of determination and the root-mean-square error. 
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1. Introduction 

Brewed coffee is a popular, versatile and widely consumed beverage throughout the 

world. It is estimated that around 400 billion cups of coffee are consumed annually [1]. 
Hence, it is one of the most important agricultural products in the international trade of 

coffee producing countries, and adds approximately 35 billion US dollars per year to the 
overall world economy [2]. According to The International Coffee Organization (ICO) 
there was an increase in coffee consumption of 4.5 % between the years 2016–2021 [3]. In 

addition to the coffee culture and pleasure of the aroma and taste, bioactive components 
of coffee that include alkaloids, terpenes, phenolic compounds, and other secondary me-

tabolites have been associated with antioxidant and anti-inflammatory properties that are 
associated with improved human health [4]. 

The aroma of coffee is one of its most relevant organoleptic characteristics, which is 

associated with volatile organic compounds (VOCs) and semi-volatile organic com-
pounds (SVOCs) [5]. VOCs are strong-smelling molecules that contribute to the definition 

of the aroma and flavor profile of coffee, while the semi-volatile organic compounds 
(SVOCs) are a subgroup of VOCs exhibiting both high molecular weight and high boiling 
point temperatures. These chemicals are fundamental for defining the organoleptic qual-

ity of coffee developed during the production process [6,7]. In order to study the compo-
sition of these compounds, the rapid headspace solid-phase microextraction (HS-SPME)-
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gas chromatography-time-of-flight (high-speed data acquisition rate option) mass spec-
trometry (GC-TOFMS), using the DVB/CAR/PDMS (divinylbenzene/carboxen/polydime-
thylsiloxane) fiber, were used for analysis [8]. This fiber was shown to be the most suitable 

stationary phase for analyzing complex components with different polarities in food ma-
trices, due to its capability to deal with high temperatures. In this context, our research 

group developed a QSPR model to predict the retention indices (I) of diverse volatiles 
detected in the headspace of rice using the DVB/CAR/PDMS fiber in the solid-phase mi-
croextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis [9]. 

The aim of the work presented here is the development of a computational model 
based on the quantitative structure-property relationship (QSPR) for the study 102 VOCs 

and SVOCs detected in coffee samples from different origins. The specific property end-
point is the calculation of a retention index quantified in the DVB/CAR/PDMS (divi-
nylbenzene/carboxen/polydimethylsiloxane) fiber by means of a coupled system of rapid 

headspace solid-phase microextraction (HS-SPME)-gas chromatography-time-of-flight 
(high-speed data acquisition rate option) mass spectrometry (GC-TOFMS). Compounds 

were optimized according to quantum chemical calculations, and represented by several 
molecular descriptors and fingerprints. Then, the unsupervised V-WSP variable reduction 
was used to obtain a pool of the most relevant descriptors to be submitted to the Genetic 

Algorithms-variable subset selection (GAs-VSS) coupled to the ordinary least squared 
(OLS) to search for an optimal model. The QSPR model was evaluated by diverse internal 

and external validation approaches, as well as the applicability domain assessment. As a 
complement, the mechanistic of action of each molecular descriptors used to predict the I 
of the VOCS and SVOCs was provided. The model was developed following the five prin-

ciples stated by the Organization for Economic Co-operation and Development [10]. 

2. Materials and Methods 

2.1. Database Description 

For this study, we considered the retention index (I) of 102 volatile and semi-volatile 
organic compounds identified in Arabica coffee samples from different geographical ori-

gins (Brazil, Colombia, Costa Rica, Guatemala, Ethiopia and Indonesia) [8]. The experi-
mental I was obtained through rapid headspace solid-phase microextraction (HS-SPME)-

gas chromatography-time-of-flight (high-speed data acquisition rate option) mass spec-
trometry (GC-TOFMS). A system of the CombiPAL SPME autosampler with a gas chro-
matograph 6890 coupled to a Pegasus III mass spectrometer was used for the automatiza-

tion of the SPME procedure. In addition, the mass spectrometer was equipped with a time-
of-flight mass analyzer. The SLB-5 column (10 m × 180 μm × 0.18 μm) was used for the 

separation of volatile and semi-volatile compounds. This column is constituted by 5% di-
phenyl and 95% dimethylpolysiloxane. Subsequently, a fiber optimization experiment was 
performed in order to evaluate diverse commercially available fiber coatings under the same 

GC and MS conditions. The divinylbenzene/carboxen/polydimethylsiloxane 
(DVB/CAR/PDMS) 50/30 μm was proved optimal for the quantification of the retention in-

dices of the volatile and semi-volatile organic compounds present in coffee samples. Refer 
to Table S1 for details of the retention indices of the 102 compounds. To the best of our 
knowledge, no computational modeling has been previously conducted with this dataset. 

2.2. Molecular Representation and Geometry Optimization 

The chemical name of each of the compounds [1–102] reported in Table S1 was used 
for retrieve the PubChem CID and the CAS registry number in the PubChem open library 

[11]. In addition, the .sdf file format of each compound was also obtained for molecule 
visualization and optimization. Initially, the alvaMolecule software [12] was used for the 
molecule standardization and curation. These processes include the verification of each 

query through several filters, which performed the standardization of benzene rings into 
aromatic form, converted unusual covalent bonds to ionic forms, added charge to 
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quaternary nitrogen atoms, removed/added exceeding/missing hydrogens, and standard-
ized nitro, azide and diazo groups. The canonical SMILES (simplified molecular input line 
entry system) notation of each compound was also generated in alvaMolecule. Then, an 

initial optimization of all molecules was development with the Avogadro program using 
the UFF force field and the algorithm steepest descent [13]. The optimized conformations 

were then used to performed quantum chemical calculations in the ground state (gas 
phase) of the compounds with the program package Gaussian 09, Rev D.01 [14]. The final 
optimization was performed with the semi-empirical method PM6/ZDO. In addition, the 

frontier orbital energies (HOMO and LUMO) and global reactivity parameters associated 
with chemical reactivity were calculated as 3D molecular descriptors. In this way, the gap 

of energy between HOMO and LUMO (ΔE) allowed the estimation of the stability of the 
molecules. The electron affinity (A) and ionization potential (I) can be defined as A = 
−ELUMO and I = −EHOMO, respectively. Moreover, descriptors associated with the electronic 

structure and chemical reactivity as the electronegativity (χ = (I + A)/2), chemical potential 
(µ  = −χ), chemical hardness (η = ∆E/2), chemical softness (σ = 1/2η), electrophilicity index 

(ω =μ2/2η) and nucleophilicity index (N = 1/ω) were also calculated [15,16].  

2.3. Molecular Descriptors Calculation and Reduction 

For the development of the QSAR model, a new set of 5663 molecular descriptors 
(MDs) and 166 MACCS (Molecular ACCess System) fingerprints were computed in the 

alvaDesc software [17]. The molecular descriptor is a useful number (or the result of a 
standardized experiment) obtained from a well-defined mathematical algorithm applied 

to a symbolic representation of molecules [18]. In a first attempt to reduce the data dimen-
sionality, descriptors with constant values and near constant values were excluded along 
with descriptors with missing values. These descriptors were merged with the 3D ones 

calculated in Gaussian. Subsequently, the unsupervised variable reduction based on the 
algorithm of Wootton, Sergent and Phan-Tan-Luu (V-WSP) was applied [19]. The V-WSP 

method uses a correlation threshold (defined by the user) in order to reduce the presence 
of descriptors with redundancy, multicollinearity and noise, in such a way as to obtain an 
optimal pool of descriptors with minimal correlation in multidimensional space. 

2.4. Molecular Descriptor Selection 

For the model development, a crucial step is the selection of a pool of the most im-
portant molecular descriptors for the multiple linear regression (MLR) based on the ordi-
nary least squares (OLS). Among the diverse methods available for the variable selection, 

the Genetic Algorithms-Variable Subset Selection (GA-VSS) technique [20] was coupled 
with the OLS method in order to find the optimal subset of molecular descriptors. This 

supervised variable selection starts with an initial random population of models (i.e., 
chromosomes) constituted by binary vectors indicating the presence (or absence) of each 
descriptor in the model. Then, new models are created through an evolutionary process 

by the combination of chromosomes (models) of the initial population (crossover), as well 
as by randomly including (or excluding) descriptors (mutation). During the evolution of 

the population, the root-mean-square error (RMSE) in cross-validation of venetian blinds 
is optimized. The model development along with the descriptor selection was performed 
in the alvaModel software [21]. 

2.5. Validation of the Model 

The merit of a QSPR model is related to the ability to correctly predict the property 
of an external set of VOCs and SVOCs, commonly not considered during the calibration 

of the model. Consequently, the dataset should be split into a training set and a test set in 
such a way as to guarantee a structure-property representation of the test set molecules 
into the space defined by the volatile and semi-volatile compounds of the training set. To 

this end, the Balanced Subsets Method (BSM) [22] was used for the partition of 112 
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compounds in the dataset. The essence of the BSM is to create groups based on the k-means 
cluster analysis, in order to identify similar volatile and semi-volatile compounds according 
to the descriptors (structure) and the retention index (property). During the genetic algo-

rithms supervised selection, the training set was used to calibrate the MLR model, while the 
test set was used to measure the predictive ability of the QSPR model. The computational 

model was further validated by the leave-one-out and the leave-many-out cross-validation 
approaches. The former procedure excludes one compound from the training set at a time, 
while the latter randomly excludes a user-defined percentage of the molecules at each iter-

ation. In the leave-many-out cross-validation, we applied the venetian blinds approach, the 
Monte Carlo random sub-sampling validation, as well as the Bootstrap method [23]. 

2.6. Applicability Domain 

Since QSPR models are reductionist models associated with the reliability of the pre-

dictions of certain molecules, it is necessary to define the theoretical region (chemical 
space) defined by the MDs within the model that performs reliable predictions for new 

molecules. In this work, the leverage approach was used to determine if a compound of 
the test set lies within (or outside) this theoretical space [24]. This approach quantifies the 
distance of each test molecule with respect to the centroid of the training compounds de-

fined by the Hat matrix (X matrix of descriptors only). Thus, it is possible to define a 
threshold value when the warning leverage is equal to h* = 3p/n (p is the number of pa-

rameters in the QSPR model and n is the number of training set molecules). Then, if the 
leverage value of each volatile or semi-volatile organic compound in the test set (hii) is 

lower than the defined threshold, the predicted I could be considered reliable. The ap-
plicability domain analysis was performed in the alvaModel software [21]. 

3. Results and Discussion 

After the exclusion of non-informative alvaDesc descriptors, a pool of 3006 MDs was 

merged with the 11 quantum descriptors. Then, the V-WSP variable reduction was ap-
plied at a threshold value 0.95 (thr = 0.95). Thus, 1237 descriptors were submitted to the 
supervised selection through the GAs-VSS coupled with the OLS method to develop the 

QSPR model. For splitting the 102 VOCs and SVOCs, the BSM was used to define the 
training set (71 molecules) and the test set (31 molecules). Refer to Table S1 for the training 

set and test set assignments. Subsequently, the 71 training molecules were used for the 
GAs-VSS coupled with the OLS method in order to search for the optimal pool of MDs. 
During the supervised selection, the root-mean-square error (RMSE) in cross-validation 

of venetian blinds was optimized (minimized) to avoid overfitting the models. The coef-
ficient of determination (R2) was also considered as a parameter of the model. Thus, a 

three-variable model was retained as the QSPR model for further analysis: 

I = 327.63 + 5.24 MW + 375.44 MDEN-23 − 385.26 Mor13v (1) 

The statistical parameters for the training set (R2 = 0.920 and RMSE = 71.78) and the 
test set (R2 = 0.897 and RMSE = 81.50) reflected negligible differences and indicated the 

absence of potential overfitting in the model. Consequently, an appropriate QSPR model 
for predicting the I property was achieved. In addition, the model derived by Equation (1) 

was subjected to several cross-validation approaches: leave-one-out (R2 = 0.869 and RMSE 
= 91.74), venetian blinds (R2 = 0.872 and RMSE = 90.62), Monte Carlo 20% out with 1000 
iterations (R2 = 0.870 and RMSE = 90.74) and the Bootstrap with 1000 iterations (R2 = 0.867 

and RMSE = 92.97). Details of the predicted I by Equation (1) is available in Table S1, while 
the numerical values for the three MDs are available in Table S2. 

Figure 1a shows the relationship between the experimental and predicted retention 
indices obtained by Equation (1). This figure suggested that this property has a linear re-
lationship around the perfect fit line. Complementary, Figure 1b shows the dispersion of 

the residuals vs. the predicted I, which suggest a random distribution of the residuals 
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around the zero line. In this model, no training molecules lie outside the limit of ± 2 times 
the RMSE. 

 

 

Figure 1. (a) experimental versus predicted retention indices for the volatile and semi-volatile organic compounds of coffee 
detected in the DVB/CAR/PDMS fiber in the HS-SPME- GC-TOFMS technique. (b) standardized residuals versus the pre-
dicted retention indices for the VOCs and SVOCs identified in coffee samples. Training set molecules are labeled in black 
and test set compounds are labeled in blue. 

The mechanism of action of the retention index phenomenon presented in Equation 
(1) was constituted by two conformation-independent molecular descriptors: molecular 

weight (MW) and the molecular distance edge between all secondary and tertiary nitrogen 
atoms (MDEN-23). In addition, the signal 13/weighted by van der Waals volume (Mor13v) 

conformation-dependent descriptor complements the topological information of the re-
tention phenomenon. The maximum correlation (R2 = 0.189) between the MW and the 
Mor13v suggested a low internal correlation in the QSPR model. Consequently, each mo-

lecular descriptor contributed to particular aspects for the retention mechanism in the 
DVB/CAR/PDMS fiber in the HS-SPME-GC-TOFMS system. The standardized regression 
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coefficients of the model indicate the degree of contribution of each descriptor in predict-
ing the I property: MW (0.75) > Mor13v (0.25) > MDEN-23 (0.21). 

The molecular weight is a zero-order constitutional index calculated as the sum of the 

atomic weights of all the atoms present in a molecule; that is, it describes the molecular size 
of both volatile and semi-volatile organic compounds [18]. Since this descriptor represents 

a linear group contribution (atomic masses) for predicting the retention index property, the 
larger the MW for a given compound, the greater the retention index of that compound. In 
a recent study, the synergistic effect of the MW for predicting the I property in the compre-

hensive two-dimensional gas chromatography combined with quadrupole-mass spectrom-
etry (GC × GC/qMS) using the BPX5 and BP20 column coupled system was presented [25]. 

On the other hand, MDEN-23 is a descriptor belonging to the Molecular Distance Edge 
(MDE) vector [26]. This descriptor measures the topological distances (2D) between nitro-
gen atoms; particularly, type 2 for secondary (-NH-) and type 3 for ternary (-N<) nitrogen 

atoms. Thus, the synergistic effect on the retention time could be related to the silanophile 
effect. In fact, when dealing with the I of pesticides in ultrahigh-performance liquid chro-

matography electrospray ionization quadrupole-Orbitrap (UHPLC/ESI Q-Orbitrap) mass 
spectrometry (MS), using the Hypersil Gold selectivity column (and the guard column Ac-
cucore aQ), it was shown that the slow elution of polar molecules (pesticides) through the 

stationary phase was caused by the high affinity of basic amine compounds for the silica 
surface of the column (which was constituted by active or acidic silanol groups) [27]. 

The model presented here also considers a conformation-dependent descriptor belong-
ing to the 3D-MoRSE (3D Molecule Representation of Structures based on Electron diffrac-
tion). These descriptors transform the 3D coordinates of compounds into a molecular code 

applying a modified equation used in electron diffraction studies for preparing theoretical 
scattering curves [28,29]. Specifically, the Mor13v descriptor considers the scattering param-

eter s = 12 Å−1 and weighs the atoms by the corresponding van der Waals volume. This 
weighting scheme considers a minimum effect of hydrogen atoms, decreases the contribu-
tion of nitrogen, oxygen and fluorine, and provides significant influence to silicon, phos-

phorus, bromine and iodine atoms. Since the coefficient of Mor13v is negative, this de-
scriptor could be related to the contribution of the volume of the volatile and semi-volatile 

compounds expressed in terms of the van der Waals volume. Thus, higher retention indices 
are related to molecules having in their scaffold fragments (pairwise atoms) with high vol-
ume, which in turn interact with the stationary phase and delay the time elution. 

Finally, the applicability domain of the QSPR model was analyzed in order to define 
the theoretical space where the model makes reliable predictions of the retention index of 

new VOCs or SVOCs (i.e., interpolations). The leverage approach (Figure 2) stablished a 
threshold limit h* = 0.1408, which indicated that predictions were reliable to only VOCs or 
SVOCs with a leverage value below this threshold limit; that is, predictions are the result 

of interpolation of the model (i.e., reliable). In this work, no test set compounds fell outside 
the AD of the model, indicating that Equation (1) makes reliable predictions of the reten-

tion index property, and consequently, could be useful for eliciting this property of new 
VOCs and SVOCs of different coffee samples. 
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Figure 2. William plot for defining the applicability domain of the QSPR model. Training set molecules are labeled in black 
and test set compounds are labeled in blue. 

4. Conclusions 

In this study, we developed a computational model based on the quantitative struc-
ture-property relationship for the retention index of 102 volatile and semi-volatile organic 
compounds detected in coffee samples. A 3D chemical structure based on the PM6/ZDO 

of each molecule was used to calculate several molecular descriptors and fingerprints. To 
handle the large number of variables, the V-WSP unsupervised reduction was applied to 

obtain a pool of useful descriptors to be used to calibrate the multiple linear regression 
model coupled with the genetic algorithms variable subset selection. The three-descriptor 
predictive model was validated through several internal and external criteria, according 

to the five principles stated by the OECD to make it applicable to predict the retention 
index of new volatile and semi-volatile organic compounds present in coffee samples of 

diverse origin by means of the HS-SPME-GC-TOFMS quantified in the DVB/CAR/PDMS. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: 
Details of the dataset: chemical names, PubChem CID, CAS registry number, canonical SMILES, 
and the retention indices (I) for the 102 VOCs and SVOCs by the HS-SPME-GC-TOFMS, as well as 
the training set and test set assignments using the BSM technique, Table S2: Numerical values for 
the three molecular descriptors for each of the 102 VOCs and SVOCs in the computational model. 
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