

Synthesis of cationic polymers based on porphyrins for photoinactivation of bacteria

Sofía C. Santamarina, Daniel A. Heredia, Andrés M. Durantini and Edgardo N. Durantini

=426nm

In(A/A_n) λ_{irr}

ZnTMP

TPPF₂₀

ZnTPPF₂₀

PTFFP₁₆

PZnTPPF₁₆

¹IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina.

In this work, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPPF₂₀) was synthesized from the condensation between pentafluorobenzaldehyde and pyrrole catalyzed by BF₃OEt₂ in dichloromethane [1]. Subsequent oxidation reaction with 2,3-dichloro-5,6-dicyano-p-benzoquinone afforded TPPF₂₀ in 38% yield. This porphyrin is a versatile template to develop more elaborate photodynamic compounds. TPPF₂₀ can be modified by nucleophilic aromatic substitution (S_NAr) with the displacement of the four para-fluoro atoms [2]. This porphyrin was metaled with Zn(II) acetate in DCM/methanol to produce the complex ZnTPPF20 in 98% yield. After that, TPPF20 and ZnTPPF20 were reacted with N,N,N',N'-tetrakis(3-aminopropyl)-1,4-butanediamine as the dendrimeric structure by S_NAr to obtain two polymers, PTPPF₁₆ and PZnTPPF₁₆, respectively. The reactions were carried out in N,N-dimethylformamide at room temperature for 44 h, followed by heating at 80 °C for 4 h. This approach produces the polymers in 100% conversion. The polymers were purified by precipitation in water and washing the solid with petroleum ether. The UV-visible absorption spectra of PTPPF₁₆ and PZnTPPF₁₆ showed the Soret and Q bands of both polymers red-shifted by about 15 nm compared to those of the corresponding monomers, TPPF₂₀ and ZnTPPF₂₀. Also, the polymers exhibited the two red emission bands, characteristic of porphyrins. Furthermore, these polymers were able to produce reactive oxygen species, such as singlet molecular oxygen and superoxide radical anion. Therefore, PTPPF₁₆ and PZnTPPF₁₆ are potential photodynamic materials to eliminate pathogens.

Synthesis of porphyrins

Photodynamic properties

In (A₀/A) λ_{irr} = 414 nm

 Φ_{Λ}^{DMF}

0.73

0.80

0,81

0,22

0.86

 λ_{max}^{Em} (nm)

607

634

644

658

608

 Φ_F^{DMF}

0.049

0.039

0.027

0.018

0.025

PTPPF16 ZnTMP

 $\lambda_{max} (nm)$

426

410

419

423

433

ż 2 ż Treatment Tn Treatments: 1) Control, 2) PZnTPPF₁₆ in dark, 3) PZnTPPF₁₆ with light, 4) PTPPF16 in dark, and 5) PTPPF16 with light. (S. aureus and E. coli were

irradiated for 15 min and 30 min with white light (90 mW/cm²), respectively) Conclusions

The synthesis of the corresponding porphyrins, and their subsequent polymerization were carried out in a fast and simple way by S_NAr. The polypropylene imine crosslinked porphyrin monomers formed a polymeric structure and retained spectroscopic absorption and fluorescence spectroscopic properties. Through photodynamic studies it was demonstrated that the polymers possess the ability to produce singlet molecular oxygen. According to these results, the polymers have potential applications for the PDI of bacteria, achieving a complete eradication of S. aureus after 15 min of irradiation, and after 30 min in the case of E. coli.

References

[1] D. A. Heredia, A. M. Durantini, A. M. Sarotti, N. S. Gsponer, D. D. Ferreyra, S. G. Bertolotti, M. E. Milanesio, E. N. Durantini, Chem. Eur. J. 2018, 24, 5950-5961.

[2] D. A. Heredia, S. R. Martínez, A. M. Durantini, M. E. Pérez, M. I. Mangione, J. E. Durantini, M. A. Gervaldo, L. A. Otero, E. N. Durantini, ACS Appl. Mater. Interfaces 2019, 11, 27574-27587.