Synthesis of kinase inhibitors utilizing thiophile-free Eschenmoser reaction of bromoindol-2-ones and thioamides

Lukáš Marek, Jiří Váňa, Jan Svoboda, Jiří Hanusek

Institute of Organic Chemistry and Technology, University of Pardubice, Studentská 573, 532 10 Pardubice The Czech Republic

e-mail: Lukas.marek3@student.upce.cz

INTRODUCTION

- 3-[Arylamino(phenyl)methylidene]oxindoles are of significant interest in medicinal chemistry, as they acts as potent tyrosine or Aurora A/B kinase inhibitors. Recently, we discovered that *Eschenmoser* reaction of 3-bromooxindoles and thioamides can serve as powerful tool in preparation of substitued 3-(aminomethylidene)oxindoles.

In this work, we demonstrate versatility of *Eschenmoser* reaction in the synthesis of several known kinase inhibitors – *Nintedanib*, *Hesperadin* and their analogues.

ESCHENMOSER REACTION - 3-BROMOOXINDOLES AND THIOAMIDES

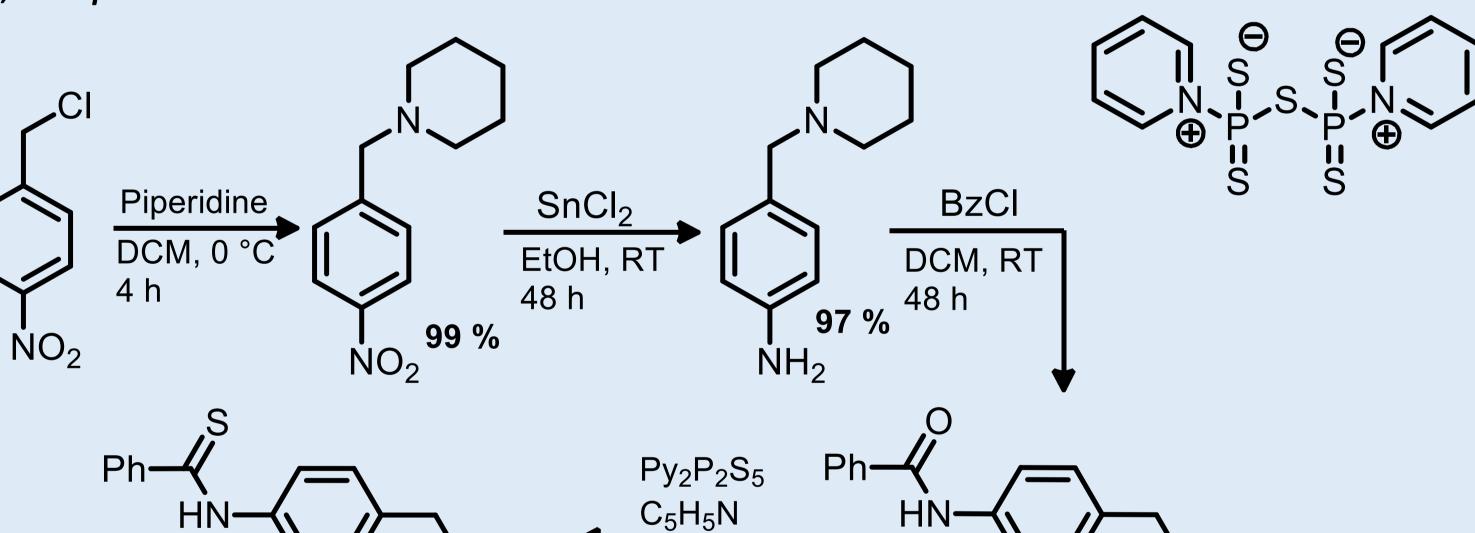
- An extensive study conducted with 3-bromooxindoles and prim./ sec./tert. thioamides; no base/thiophile needed for prim. and sec. thioamides, for tert. thioamides – thiophile necessitate!
- Reaction proceeded smoothly in polar DMF at 25 °C
- Thiobenzanilide derivatives shown promising results

 $R_1 = H$, 5-CI, 5-Me, 5-NO₂, 6-CI, 6-COOMe

 R_2 = Ph, Me

 R_3 = H, Me, Et, Ph, 4-BrPh, 4-ClPh, 4-CF₃Ph, 4-MeOPh, 4-MePh, Me, *n*-pentyl, chex

 $R_4 = H$, Me, Et


Thiobenzanilide-derived TKI pharmacophores! Yields: 43 – 88 %

 $Py_2P_2S_5$ – excellent

chemoselectivity

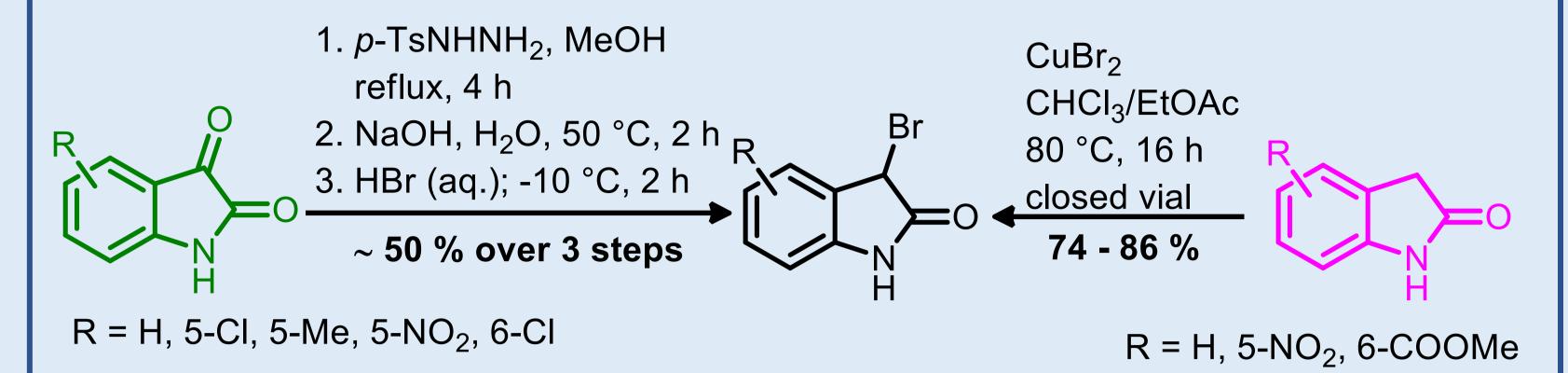
SYNTHESIS OF KEY THIOAMIDES

"Hesperadin thioamide" – thionation

80 °C, 40 min 86 %

"Nintedanib thioamide" – thiobenzoylation (screening + scale-up)

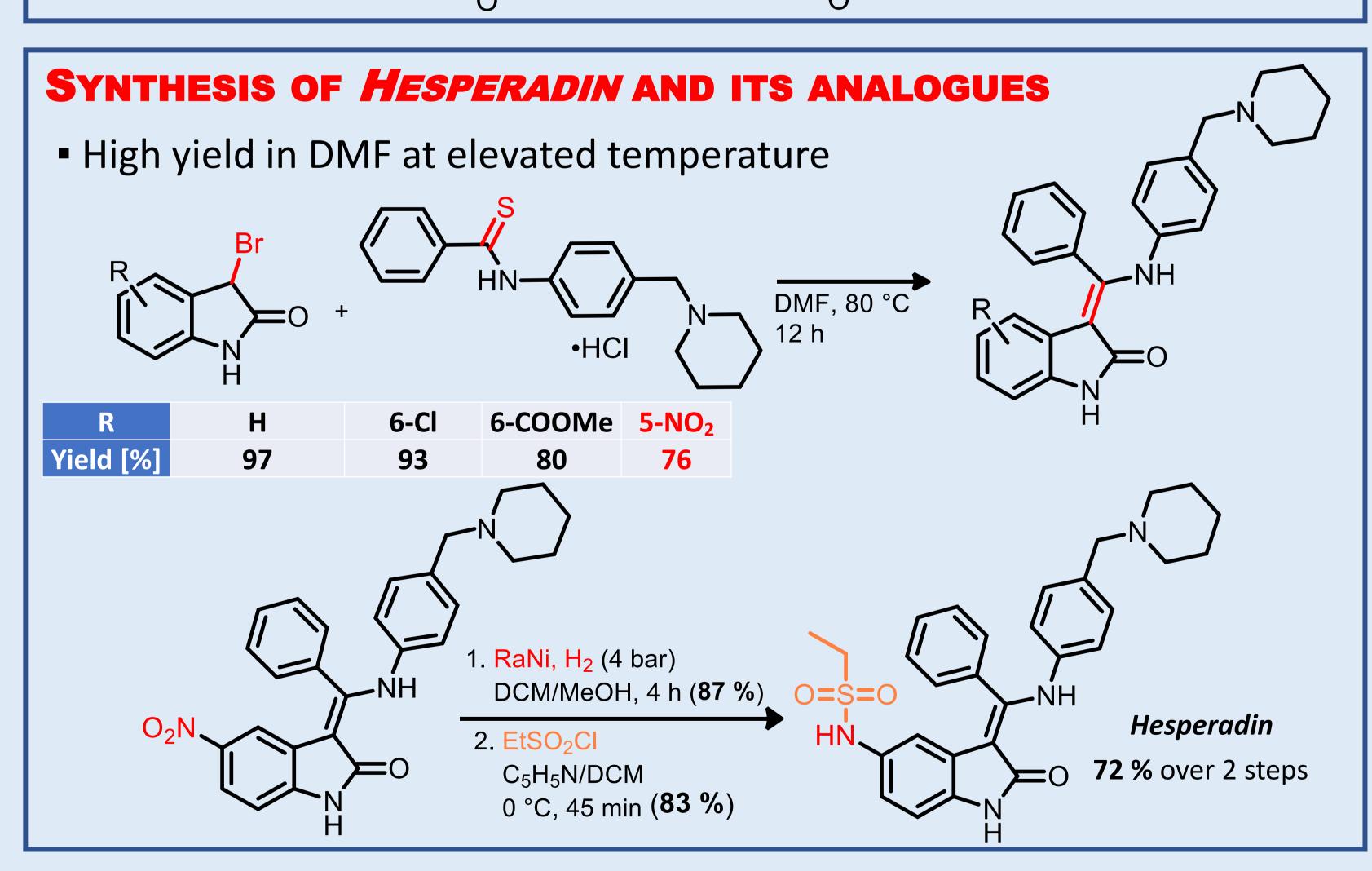
Er	ntry	Agent	Mol. equiv.	Solvent	Time [h]	Temp. [°C]	Conv. [%]	Yield [%] ^a / [%] ^b
	1	PhC(=S)SMe	1	DMF	60	100	55	50/-
	2	PhC(=S)SMe	2	DMF	60	100	100	>95/86
	3	PhC(=S)SMe	1	DMSO	60	100	50	35/–
	4	PhC(=S)SBt	1.5	DCM/DMF	12	60	100	>95/85
	5	Bn_2S_2	0.5 (0.1 I ₂)	DMSO	24	100	>95	decomp.
	6	(PhCS)Sc	1	THF	0.25	- 10	15	15/-
	7	(PhCS)S ₂	1	CHCl ₃	1	25	40	20/–


a) Assay of desired thioamide in reaction mixture b) Isolated yield (flash LC) c) Prepared "in situ" Conditions: 0.1 mmol of starting aniline in 1 ml of solvent (c = 1M) in closed HeadSpace vial. Conversions determined by ¹H NMR after evaporation of reaction solvent.

REFERENCES

- [1] Roth G.J.; Binder, R.; Colbatzky, F.; Dallinger, C. et al. J. Med. Chem. **2015**, 58(3), 1053 63.
- [2] Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. J. Pharm. Res. 2020, 152.
- [3] Roth, G. J.; Heckel, A.; Colbatzky, F.; Handschuh, S. et al. J. Med. Chem. 2009, 52, 4466 4480.
- [4] Marek L.; Kolman L.; Váňa J.; Svoboda J.; Hanusek J. *Beilstein J. Org. Chem.* **2021**, 17, 527 539.
- [5] Marek L.; Váňa J.; Svoboda J.; Hanusek J. *J. Org. Chem.* **2021**, 86(15), 10621 29.
- [6] Patent WO 016530 A1 **2017**.
- [7] Patent WO 068441 A2 **2012**.

SYNTHESIS OF STARTING 3-BROMOOXINDOLES


- Three step synthesis starting from isatins vs. novel method utilizing oxindole as starting material and CuBr₂ as mild bromination reagent
- Direct bromination is compatible with hydrolysable groups (e.g. COOMe)

- Both starting thioamides contains basic centers - decomposition of 3-bromooxindoles to isoindigo derivatives
- Conversion of thioamides into suitable salts
- Hesperadin thioamide·HCl/Nintedanib thioamide·2TfAc were prepared

SYNTHESIS OF *NINTEDANIB* - SOLVENT SCOPE & SCALE-UP

Solvent	Conversion [%]	Amide [%]	Product [%]	 Best conversion achieved at 60 °C 						
Acetone	91	2	89	in ACN as reaction solvent						
ACN	100	3	97							
DMSO	96	75	21	81 % yield in 3.3 mmol scale						
DMF	84	0	84							
THE	73	1	72	N - N - N - N - N - N - N - N - N - N -						
Noted and the second se										

CONCLUSIONS

- Initial study confirmed usefulness of *Eschenmoser* reaction for preparation of oxindole-based TKI pharmacophores
- Thionation of corresponding amide afforded thioamide for synthesis of *Hesperadin*
- Thiobenzoylation of commercially available aniline S-methyldithiobenzoate gave "Nintedanib thioamide" in high yield
- Novel synthetic method for synthesis of 3-bromooxindole by direct **bromination** of oxindole developed
- *Nintedanib* prepared in 81 % yield by Eschenmoser reaction
- Hesperadin analogues were formed by reaction of substituted 3-bromooxindoles with "Hesperadin thioamide" in DMF at 80 °C
- **Hesperadin** synthetized from corresponding 5-NO₂ derivative