

The effect of effective microorganisms on the growth and the nutrient content of tomato transplants Margit Olle **NPO Veggies Cultivation** E-mail: margit.olle@gmail.com

Introduction

Materials and Methods

- Effective microorganisms (EM) technology was first developed in the 1970's.
- EM is a mixture, containing primarily lactic acid bacteria, photosynthetic bacteria, and yeast, maintained at pH 3.5.
- EM suppress the incidence of pests and diseases, solubilize minerals, conserve energy, increase photosynthetic efficiency, and fix biological nitrogen.
- **PROBLEM ———** Elongated, low quality tomato variety 'Valve' transplants.

Experimental site and time:

Estonian Crop Research Institute greenhouses, Winter of 2014 Substrate:

Peat-based mixture fertilized with Peat Care 11-25-24 (2 kg m⁻³), magnesium sulphate (0.5 kg m⁻³) and mixed with dolomite lime (7 kg m⁻³).

Treatments:

Item	EM treatment	Control
Seeds soaking 0.5 hour	EM 1:500 solution	Water
Substrate treatment	EM 1:500 solution	Water
3 true leaf stage spraying	EM 1:1000 solution	Water
1 week later	EM 1:1000 solution	Water
1 week later	EM 1:1000 solution	Water
1 week later	EM 1:1000 solution	Water

AIM

The purpose of this investigation was to assess the influence of effective microorganisms on the growth and nutrient content of tomato transplants.

Results

Replications and experimental design:

Randomized block design, plot size 6 plants, 4 replications, experiment repeated 2 times. Laboratory analyses: N, P, K, Ca, Mg content **Statistics:**

ANOVA by Excel 2010, comparison of means by Fisher LSD test

Results

The contents of nitrogen, phosphorus, potassium, calcium, and magnesium in tomato transplants dry matter (%).

1		Ν	Р	K	Са	Mg
	EM	4.0 ***	0.73 *	5.0 **	2.3 **	0.68 *
	treatment					
	Control	2.9	0.60	3.7	1.9	0.60

Conclusion:

Tomato transplants stay compact, have thicker stems and contain more nutrients in EM treatment.

Figure:

Table:

The picture of tomato transplants: on the left – EM treatment, on the right – Control treatment

Acknowledgements: This research was financially supported by the Estonian Agricultural Registers and Information Board, by the Jaagumäe Agro Ltd. and by the Estonian Crop Research Institute.