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Abstract:

The present communication is aimed at creating the biophysical and
mathematical foundations for the understanding of the current trends in
the use of Machine Learning, Networks, and Artificial Intelligence in the
study of Neuroscience. Besides that, these foundations will permit to
define the methodologies behind Cognitive Neuroscience, Neuromorphic
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terminals

Z‘f Computing, Quantum Machine Learning, and Quantum Artificial Neural
Ty Networks.
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3 Resumen:
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QOO0 g La presente comunicacion va dirigida a crear las bases tedricas en
N7 matematica y biofisica para comprender los modelos usados en el

‘B»\
SR B Aprendizaje de Maquina, Redes, e Inteligencia Artificial para el estudio de
.". < las Neurociencias. Ademas, estas bases permitiran definir las
= metodologias detras de la Neurociencia del Conocimiento, Computacion

Neuromorfica, Aprendizaje de Maquina Cuantico y Redes Neuronales
Artificiales Cuanticas.
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Tentative Layout

Context of the presentation and the topic.

Part 1: The foundations: dynamical systems, and complex
networks in Brain Science.
« History of the problem.
== | « Computational Neuroscience and Dynamical Systems.
2h~ « Graph theory, networks, feedback loops.
« Brain networks: anatomical, functional, and layered.

Part 2: Deep Learning, Machine Learning, and Artificial

Intelligence in Brain Science.

« Machine learning for Brain Science fundamentals.

 Atrtificial Neural Networks for Brain Science.

 Atrtificial Intelligence for and from Brain Science.

« Neuromorphic Computing, Quantum Computing, Quantum
Machine Learning and Brain Science.
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The context of the topic
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The context of the topic
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The context of the topic
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Scales of Modeling and the love for Fractions !!!

Regional scale

Urban scale o
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Scales of Modeling and the love for Fractions !!!
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Part 1: The foundations: dynamical systems, and
complex networks in Brain Science.

« History and Motivation of the problem.

« Basic ideas about the Nervous System and Neurons.

« Basic ideas about Electro-encephalography (EEG), Magnetic

= Resonance Imaging (MRI), Functional MRI (fMRI), and
Superconducting Quantum Interferometer Devices (SQUIDs).

z‘f « Computational Neuroscience and Dynamical Systems
(Hodgkin-Huxley, Fitzhugh-Naguno, Izhikievich, Morris-Lecar,
Hammarsh-Rose, Li-Rinzel, Wilson-Cowan, Kuramoto,
Hopfield, Spin Glass, and Cellular Automata)

« Graph theory, networks, feedback loops.

« Brain networks: anatomical, functional, and layered.
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A Brief History of Neuroscience

A Reticularists B Neuronists

FfK Dagiters

8341868

J.von Gerlach

(1820-1896)

. L~ g o T
WILPeIm High”'| Augusteskorel
(1831=1904) (1848-1931)*

Bt

-
b
AN ol

-
2\ “.L\
NS

25
\ﬂ\'
[

v
A

')
~/

o
TR

s
lq‘}zi

L)
A
:J
y
{

C. Golgi

S. Ramoén y Cajal [
(1843-1926) X

(1852-1934)

LYl

Nobel Prize

/ X ’.,’r
in Physiology or Medicine rqﬂﬂ
1906 Izad g -
T \ \g % AL
: ) |



Brain Networks Dynamics — From Dynamical Systems to
Complexity and Artificial Intelligence

A Brief History of Neuroscience
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Santiago Ramon y Cajal (1852 — 1934)
is considered the father of modern
neuroscience. After his pioneering
contributions to the anatomy and
histology of the brain, he proposed the
existence of the nerve cell, the neuron.
His Neuron Doctrine, as discrete units,

I the brain is made of, marked a beginning

" D - to a deeper understanding of the brain

activity.

bias
Society for Neuroscience founded human neurophysiology
recordings of electrical activity development of methods to average spectral M/EEG analyses human brain imaging
in exposed animal brain human scalp EEG EEG traces become mainstream other

Donders’ validation of cognitive | development free availability of new MEG
chronometry \L’ EEG method ERP studies | of MEG analysis toolboxes  technology (OPM)
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‘ 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
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lesion studies establishment of link between in vivo autoradiography | development development incorporating
by Broca, Wernicke, .. | blood circulation and brain activity to measure rCBF of MR of BOLD MR machine learning
observations of changing measurements of blood circulation in imaging rCBF using  development identification of

pulsation through skull defects individual with arteriovenous malformation scintillation detectors of human PET resting-state networks
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A Brief History of Neuroscience
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A Brief History of Neuroscience
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Neurons.

Basic ideas about the Nervous System and

Barriers of scale & comg

— Individual variations
— ~5 3y 105 % 10" synapses
— ~8,6 % 10" neurons

~8,5 x 10" non-nauronal cells

— ™3 000 major cell types/brain

~5 major cell types/brain region
— ™737 brain regions

~500 receptor types

~450 icn channel types

~10° proteins/cell

~10* organic molecules/cell

- ~2-5x 10" molecules/cell

~ ™5 000-10 000 genes expressed/call

Gender variations \

- ™20 000 genes /
—

Haw to identify the
molecular & callular
mechanisms
underlying brain
function & behaviar?

How torise to the
challenge of volume,
time & dynamics in full
connectome mapping?

How to scale up
cellular phenatyping &
deal with the
dynamics of cellular
properties to achieve a
reliable neuronal cell-
type classification?

N

@.’dﬁng a digital copy of the brain

+ by combining experimental &
thearetical approaches

- to be consistent with
experimental data

- to test & evolve thearies on brain
structure & function

= by formulating:

- principles of cellular structure to
synthesize all the neurons & glial
cells

- principles of molecular
organization & interaction

- principles af how ion channels &
receptors are formed &
distributed in neurons

- principles of synaptic connectivity

- principles af how brain regions
are connected

- principles of how the brain is

K;Uupled to the body

Transcending scale &
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Basic ideas about the Nervous System and
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Basic ideas about the Nervous System and
Neurons.

Mervous System (NS)

» ¥
Peripheral NS Central NS
- ¥ «
Autonomic NS Somatic NS Brain Spinal Cord
v B ¥ ¥
Sympathetic NS Parasympathetic NS Forebrain Midbrain Hindbrain
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Telencephalon Diencephalon Mesencephalon H&t-ang-aphalnn Hy&lan:aphalnn

v v y .

Cerebral Cortex Thalamus Tectum Pons Medulla
Basal Ganglia Hypothalamus Cerebellum Cerebellum
Hippocampus

Amygdala



Brain Networks Dynamics — From Dynamical Systems to
Complexity and Artificial Intelligence

Basic ideas about the Nervous System and
Neurons.

Parasympathicus Sympathicus
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Basic ideas about the Nervous System and
Neurons.

Parts of the Human Brain
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Basic ideas about the Nervous System and
Neurons.

Functional Areas of the Cerebral Cortex

Mator s C I sul Sensory areas and related
Primary motor cortex entral sulcus association areas

Premotor cortex Primary somatosensory
cortex Somatic

Frontal
Somatosensory

eye field
Broca's area association cortex

(outlined by dashes)
Prefrontal cortex

sensation

{?urftamr]r conex| yacte
{in insula on r

of lateral sulcus)
Wernicke's area
(outlined by dashes)

Primary visual|

-. - — a . | b "'-=:_-::::::::::::_. {:{)“Ex .
1 i ; —Visual ~Vision
: association

association area
Primary
auditory cortex -

-Hearing

(a) Lateral view, left cerebral hemisphere

. Primary motor cortex . Motor association cortex
. Primary sensory cortex . Sensory association cortex

D Multimodal association cortex
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Basic ideas about the Nervous System and
Neurons.

Basic Unit of the nervous system — the Neuron
The legacy of Santiago Ramon y Cajal

Terminal branches of axon
(form junctions with other cells)

Dendrites
- (receive messages
i 4 -\_'-\ J ;7 from other cells) .
o . ¥,
J . " \'; | [ AX'I'JTI 4 "I::
. Kl 5 (passes messages away L
- from the cell body to

Cell body
(the cell’s life- v
support center) =

other neurons,
muscles, or glands) <

Myelin sheath

(covers the axon of some
neurons and helps speed
neural impulses)

o B Neural impulse
! (electrical signal traveling
down the axon)
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Basic ideas about the Nervous System and

Neurons.
Types of Neurons
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Basic ideas about the Nervous System and
Neurons.

Information flow through neurons

I
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-
f—"‘(‘fﬂ/—j%"w

Nucleus

- A

| :> :—
Dendrites Cell body Axon
Collect Integrates incoming Passes electrical signals
electrical signals and generates to dendrites of another
signals outgoing signal to cell or to an effector cell
axon

Figure 45-2b Biological Science, 2/e
© 2005 Pearson Prentice Hall, Inc.
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Basic ideas about the Nervous System and

o Neurons.
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Basic ideas about the Nervous System and
Neurons.

BRAIN SIZE AND NEURON COUNT

Cerebral cortex mass and neuron count for various mammals.

Sem

e
Capybara Rhesus Human African Bush
Macaque Elephant
non-primate primate primarte non-primate
482 g 69.8 g 1232 g 2848 g
billion billion billion billion billion
neurons neurons neurons neurons neurons
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Basic ideas about the Nervous System and
Neurons.

Hierarchy of brain function

Abstract Thought
LEVEL 4 Neocortex Concrete Thought
Affiliation
Attachment
LEVEL 3 Limbic Sexual Behaviour

Emotional Reactivity
Motor Regulation

Arousal
LEVEL 2 Diencephalon Appetite
Sleep
Blood Pressure
LEVEL 1 Brainstem Heart Rate

Body Temperature
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Basic ideas about the Nervous System and
Neurons.
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* The study of the dynamics of the Nervous System is
the study of the dynamics of a complex system with
regulatory feedback loops (control system theory),
where self-organization and cooperation (synergetics)
operate in the background of a large complex network
(graph theory and networks).

Such a system has the ability of self-learning with a

z‘ 1
high level optimization. The process of self-learning
g occurs following a sequence of unsupervised and
() 3 supervised learning.
3

« Brain dynamics is an example of structure — function

e

Q
XX
NSl

() 5 problems. Two types of connections: structural

\'\»,« 7| 2 (anatomical), dynamical (functional). Therefore, the
}1’]/‘\\?& B understanding of the activation of functional networks of
.‘.. E neurons behind behaviors, response to stimuli, and
£ central nervous system degenerative diseases is of

tremendous importance.
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o How to collect information about
the dynamics of neurons and the

j:{r B brain?

Fluorescence
Calcium Imaging

f out i’
single cell
recarding

()
N

\\v XX /
ORKX)
PO
00‘00

output layer

R

Figure 1. Commuonly used techniques for recarding brain activity. From left to right, temparal resolution decreases, fram
<1 ms for single cell and multielectrode array (MEA) recordings to ~1 sec for fAMRLL The colours indicate the approxirmate
physical scale of the activity that can be recorded with each approach, as well as the approximate depth limits of each
technigue. ECoG, EEG, and fluorescence imaging are limited to recording from the brain’s outer surfoce. Note that
hurman recording technigues (ECoG, EEG and fMRI) cover much larger areas than technologies used in animals. This
comes at the expense of detail.
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How to collect information about the dynamics
of neurons and the brain?

Resonance Magnetic Imaging (MRI) and Functional MRI

Data Theoratical
e N e T P e e e e as515
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Graphic representation of Voxel-wise brain l ol -
network and feature extraction = AEEE I
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How to collect information about the dynamics

of neurons and the brain?
Resonance Magnetic Imaging (MRI) and Functional MRI

fMRI (Blood Flow) during TM

s Red =
L Higher
Blood Flow
}é‘:z% Blue=
PN _> Lower
Blood Flow
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How to collect information about the dynamics

of neurons and the brain?
Resonance Magnetic Imaging (MRI) and Functional MRI

A TR
3 E\_"I?_._ﬁ_}t
— 2 Y WSS
0N
SR T

Department of Mathematics
to er

- b,

4
Anatomical parcellation 1 ¢ Recording sites

Histological or

» imaging data
s ‘ f 1‘\““*&”4‘%} 1 ]
bias
5 L e
®
. %— 3 / Wﬁnﬁjﬂﬂd‘wﬂ;

Functional brain network

N

\ &) (
(ORAK
PO

NGB

P

—
NS

hidden layer 1  hidden layer 2

AN

Graph theoretical analysis

Mature Reviews | Meuroscience

input layer



Brain Networks Dynamics — From Dynamical Systems to
Complexity and Artificial Intelligence

How to collect information about the dynamics
of neurons and the brain?

Resonance Magnetic Imaging (MRI) and Functional MRI
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How can we optimally construct How can we extract the
functional connectivity graphs? patterns in fMRI graphs?
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How can we jointly model
fMRI and dMRI connectivity?

dMRI

Voxels -

How can we optimally construct How can we extract the
structural connectivity graphs? patterns in dMRI graphs?
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How to collect information about the dynamics

of neurons and the brain?
Resonance Magnetic Imaging (MRI) and Functional MRI
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How to collect information about the dynamics

of neurons and the brain?
Superconducting Quantum Interferometer Device — SQUID
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How to collect information about the dynamics

of neurons and the brain?

Worldwide
. . — data mining — X
Biological Informatics
experiments . Statistics
/ \\"A
Theory Data Theory
Applied math Integration Applied math
Biology Predictive methods
N /

Digital
Reconstruction

Simulation
Neuroscience

In Silico

Valldation Experiments
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Analysis
Visualization
Experimental data

Hypothesis & theory
testing & generation
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The EEGs images of the epileptic person
showing areas of major activity.

Time series analysis of the EEG signals for
Epilepsy seizure forecast, Cing M.S. and
Quesada D., In Proceedings of the
MOL2NET, |International Conference on
Multidisciplinary Sciences, Sciforum
Electronic Conference Series, Vol. 3, 07003;
http://doi:10.3390/mol2net-03-05102 ,
http://sciforum.net/conference/161/paper/510
2

Complex networks and machine learning: From Molecular to Social Sciences (editorial article),
D.Quesada, M. Cruz-Monteagudo, T. Fletcher, A. Duardo-Sanchez, and H. Gonzalez-Diaz, Applied

Sciences, applsci-626592 http://doi:10.3390/app9214493

(2019).
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of neurons and the brain?

Data generated by the Human Brain Project until
today requires techniques from Data Mining, Machine
Learning, Pattern Recognition, and Deep Learning in
order to make sense of them, to integrate data across
scales and time, and to find patterns from spikes
distributions in connection to different stimuli.

Different techniques produce data with different
spatial and temporal resolutions, therefore we need
to find out how to interpolate across scales.

Mathematical modeling based on synthetic networks
should shed light on patterns obtained from data.
Mathematical modeling of the brain activity is
demanding a huge computer power, Exascale High
Performance Computing (Ex-HPC). Foundations of
precision medicine.

Might Quantum Computing help with HPC and
precision medicine?
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What is coming next to dynamical systems on networks?

Cognitive Computing and Artificial Intelligence

IBM’s Watson
defeats champions
of US game show
Jeopardy!

Most universities
have courses

in Artificial
Intelligence.

lan Goodfellow comes
up with Generative
Adversarial

Networks (GAN).

Personal assistants like Siri,
Google Now, Cortana use speech
recognition to answer questions
and perform simple tasks.

AlphaGo beats
professional
Go player Lee
Sedol 4-1.
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What is coming next to dynamical systems on networks?
Cognitive Computing and Artificial Intelligence

Quantum
Brain/Mind/Consciousness
Theories

NeuroQuantology

Measurement
Problem and Quantum Biology
Consciousness

Quantum Methaphoric
Neurobiology Theories
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