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Computational Neuroscience,
Theory of Control, and Networks

David Quesada — Saliba
Department of Mathematics, Wolfson Campus, Miami Dade
College,300 NE 2"d Avenue, Miami FL 33132

Abstract:

The present communication is aimed at creating the biophysical and
mathematical foundations for the understanding of the current trends
theory of control and networks applied to Computational
Neurosciences. There are many different models of interest on this
area Hodgkin — Huxley model, Fitzhugh — Nagumo model, Morris —
Lecar model, Hindmarsh — Rose model, Izhikievich model, Li — Rinzel
model, Wilson — Cowan model, Kuramoto model, Hopfield and Spin
Glass-like models, Cellular Automata models, etc. On this presentation
the focus is on this class of models and their implications/relations to
computational neurosciences.
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An important piece to understand, to integrate different data sets,
and to predict future behaviors is the use of mathematical models,
capturing specific situations and appealing to synthetic neural

networks generated in advance.
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Machine learning methods assisted by biophysical (mathematical)
models will be capable to deeply understand brain activity.
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Most used Mathematical models of neuron dynamics and spike
and busting activity

 Hodgkin — Huxley model — neurons are reduced to an equivalent electrical circuit
with resistors and capacitors (RC circuits).

« Fitzhugh — Nagumo model — a simplified version of the Hodgkin — Huxley model,

keeping the idea of the equivalent electrical circuit.

P—5 * Morris — Lecar model — a simplified version of the Hodgkin — Huxley model, with

: two phases of excitability.

* Hindmarsh — Rose model — nonlinear (polynomial) system of ODE aimed to model
the spiking and bursting behavior of the membrane potential of a singe neuron.

s « lzhikievich model — nonlinear (polynomial) system of ODE aimed at spiking
behavior with post spike redefinition of the variables (2).

* Li — Rinzel model — modified Hodgkin — Huxley model to include the effect of the
astrocytes in the firing of neurons. A model of a tripartite synapse.

« Wilson — Cowan model — consider a homogeneous network of excitatory neurons,
and its used widely in modeling the triggering of epilepsy.

« Kuramoto model — neuronal network seen as a collection of linked oscillators.

« Hopfield and Spin Glass-like models — neurons treated as spins, described like
the Ising model in magnetism. Spin glass version of the dynamics of neurons.

« Cellular Automata models — the neural network is represented as cells that update
their states in connection to the states of surrounding cells and following specific
rules set in advance.
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From Biophysics to Mathematical Models of Neurons

4 .
I,_ Overshoot Cell Exterior

20 Rising | | & P8¢ +4++++ttttt ittt b———t

g g g g S R S

< Falling Cell Interior

phase

———— e e e

+++++trt bbbt ———+

dendrites

“  nucleus

Membrane potential (mV)
.
2

. -_ - _— 4; Undershoot

>-cell

# "1 body axon  FL & Resting -
) aor ”H__;Ibn_ﬁ'w T T T T phase Electricity is created by a sudden reversal in
in, e vential 0 | 2 3 charge. As you see here, an action potential
potendin Ti ) is simply an electrical current that travels
in, z ‘ T -2 ime (ms) down an axon of a neuron.
in, . .
bias Calculating Capacitance
] 5
> u Parallel-plate capacitor in vacuum +30mV @ 3 K+
= - et
= y )
. 5_ * Chargedensity: &= < Na" Nat
8 A4 Sedium gates Patassium gates
o~ « Electric field: g2 e 4 0 close open
a; £y A i @
= e 1 o—pa= 104 Depolarization | K+ _ )
. . . . &= * Potential diff.: S oy . oo Top side of B Active sodium
% ‘ . oy 2 < num_n sid e o Boitomn and potassium
\ / = Vy=¥,~Vy=—|B.dé=[ B di=Ed top plate has plate has - UMmps.
\4&“}« = M +=7) A o " charge -Q ChAfe Q fNa+f MNatT . pump
* Capacitance: g - i L 1N | Na
PR 5 s
— a
7] S Electric field lines _ — Repolarization
./‘.,\.' . w » The capacitance depends only on the 55 my Rest
£ geometry of the capacitor. potential @
é » [tis proportional to the area A. JomV p——l - - - - T = = -
‘\‘ = « It is inversely proportional to the separationd
S : o : g Mat Mat Kt
PN * When matter is present between the plates, its 90 mV o
/\"\ properties affect the capacitance. Hyperpalarizatian

()

input layer



Brain Networks Dynamics — From Dynamical Systems to
Complexity and Artificial Intelligence
Computational Neuroscience, Theory of Control, and
o Networks
Moving to equivalent electrical circuits, RC circuits
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—_— The Hodgkin — Huxley membrane model

« The Hodgkin — Huxley (HH) membrane model provides the analog circuit studied the
most in neurophysiology. They formulated a membrane model that accounts for Na*,
K* and ion leakage channels.

« The membrane resting potential for each ion species is treated like a battery and the
degree to which the channel is open is modeled by a variable resistor.

« There is a membrane capacitance. The resistances to Na* and K* ions change as

NG does the membrane potential.
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FitzHugh — Nagumo circuit model — introduced in 1960
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The Kuramoto model or Kuramoto Oscillators

Kuramoto Dynamics
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scientific reports

Explore content v About the journal v  Publish withus v

nature > scientific reports > articles » article

Open Access | Published: 20 April 2017

Structure Shapes Dynamics and Directionality in Diverse
Brain Networks: Mathematical Principles and Empirical
Confirmation in Three Species

Joon-Young Moon, Junhyeok Kim, Tae-Wook Ko, Minkyung Kim, Yasser Iturria-Medina, Jee-Hyun Choi,

Joseph Lee, George A. Mashour & UnCheol Lee

Scientific Reports 7, Article number: 46606 (2017) | Cite this article
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Simulations with
Analytic study —| model and brain networks of
human, macaque, and mouse
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Modeling Philosophy — Bottom - Top

From a single neuron to a bundle of
neurons with different topologies of
connectivity and interaction

strengths.

Cortical patches of neurons with
different topologies of connectivity
and interaction strengths.
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Fitzhugh — Nagumo model (microscopic picture)
3

Kuramoto model (mesoscopic picture)
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M. Rubinov and O. Sporns, “Complex networks measures of brain connectivity: Uses and
interpretations”, Neurolmage 52, 1059 — 1069 (2010).

P.N. Taylor, M. Kaiser, J. Dauwels, “Structural connectivity based whole brain modeling in epilepsy”,
J. Neuroscience Methods 236, 51 — 57 (2014).
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Solutions for the Fitzhugh — Nagumo Model

Effect of Brain network topologies on the synchronization of neuronal oscillations: Is this the gateway to
the understanding of Central Nervous disorders? Quesada, D.; Astudillo, N.; Garcia-Russo, M. In
Proceedings of the MOLZ2NET, International Conference on Multidisciplinary Sciences; Sciforum
Electronic Conference Series, Vol. 2, 07004; http://doi:10.3390/mol2net-02-07004 , (2016).
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Differences in Graphs with nodes
Types of Graphs often found in distributed according to different
applications Probability Distributions
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Steps for Modeling
1. Generate a model network
2. Compute the topological indices
of the graph.
3. Save the information about the
8- Adjacency matrix A = [|g;]| and o
| o the Weight-of-Connection matrix -0
= ¥ G = llgy|
4. Solve the system of ODE on the
" bes network.

Community 2

5. Compute the synchronization
properties for each of the two
models: Fitzhugh-Nagumo and Community |

Kuramoto models.

outpul layer

H. Schmidt, G. Petkov, M. Richardson, J.R. Terry, “Dynamics on networks: The role of local dynamics
and global networks on the emergence of hypersynchronous neural activity”, Plos Computational
Biology 10, 1 — 16 (2014).

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and
functional systems”, Nature Reviews Neuroscience 10, 186 — 198 (2009).
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The lack of connectivity, and the presence of bridge points in the neural network is
extremely important when you are forced to do surgical interventions. It will determine the
extension of the surgical removal and the concrete spot where the procedure should be
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A Hopfield Network Model Spin Glass Model
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is affected by the other magnets around it.
However, in a spin glass they are frustrated

E e —— ‘/ T ‘/‘/ ‘/ ® ® ® , ® ® and have difficulty choosing which direction
2 to point. Using his studies of spin glass,

Parisi developed a theory of disordered and

dendrit T . ° f ® ® ® ® zr::{:x;l:’::\:r;nsena that covers many other
&
7R (beol‘liy ! @® Iron
xon - - i /.' * ¢ ® Copper

in, terminal
in, 217 t 1 K—\ @ \ & ® e ®

" bias Anti-ferromagnetic

frustration :

oF AN
8 0 -1 1 _
«| ;= |1 0 EpJeTeT o o Sesote sy
g ro2 oo [Xafofo1folo]1]1
QOO = %o o lolol i1 > >_> spin liquid
N 2 i
\’}Q::‘::g - spin glass
[

y
update \\ 1fﬁtrmr'rne_zu;]r'l1t=:l:I:: spin ice
energy % L rustration ‘
L " 4 b F E A r
e — Y =W =W
A —energy p— —

states

/Mr‘ _
o{o‘o ®
Vo
P

N

input layer



Brain Networks Dynamics — From Dynamical Systems to
Complexity and Artificial Intelligence
Computational Neuroscience, Theory of Control, and
Networks
Cellular Automata in Brain Activity Modeling

Group of cells with a defined state for each one, which is updated in
connection with the surrounding cells states. Rules are defined in advance,

as well as the the type of neighborhood to be used.
Smith {a) *:p,'# dr
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Cellular Automata example of Brain
activity (left) and neuron spikes (right)
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 Mathematical models used to simulate brain activity
range from continuous non linear dynamical systems
to network-based ones, where either you solve
systems of ODE on the nodes or minimize energies in
a neural network, as an optimization problem.
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« Data-driven models, where information about
anatomical networks are embedded into calculations
(data assimilation) produce much better results
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