

The 3rd International Online Conference on Crystals 15–30 JANUARY 2022 | ONLINE

Chaired by PROF. DR. HELMUT CÖLFEN

High resolution cryo-EM structure of the *Methanocaldococcus jannaschii* small-heat shock protein

Joohyun Lee¹, Truc Kim¹, Bum Han Ryu^{1,2}, and Kyeong Kyu Kim^{1,*}

¹ Department of Precision Medicine, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; ² Institute for basic science (IBS)

* Corresponding author: kyeongkyu@skku.edu

Methanocaldococcus jannaschii, a hyperthermophilic and barophilic methanarchaeon, contains a single gene (MJ0285) encoding a 16.5-kDa polypeptide chain of a small heatshock protein (sHSP). This sHSP—now called MjsHSP16.5—is upregulated in response to high growth temperature or pressure and functions as an ATP-independent holding chaperone that transiently binds and prevents the misfolded proteins from aggregation. The molecular mechanism is remained to be elucidated, which primarily required a higher resolution of MjsHSP16.5 structure. In this study, we reconstructed the MjsHSP16.5 24-subunit oligomer to a 2.5-Å resolution using the single-particle cryoelectron microscopy (cryo-EM) technique. Despite a similar hollow spherical homooligomer, the MjsHSP16.5 cryo-EM structure is slightly bigger than its crystal structure and reveals a loosen subunit-subunit interactions. Furthermore, cryo-EM image reconstruction shows additional N-terminal residues which are absent in most of MjsHSP16.5 crystal structures. These residues likely involve the holding chaperone activity and the oligomer stabilization. Using dynamic light scattering (DLS) and negative-staining transmission electron microscopy (TEM), we observed that MjsHSP16.5 oligomer was shrunk upon heating, suggesting a large conformational change in MjsHSP16.5 at elevated temperature. To our knowledge, MjsHSP16.5 is the first sHSP to have the cryo-EM structure archiving a resolution at 2.5 Å.

Keywords: chaperon, small heat-shock protein, single-particle cryo-electron microcopy

Introduction Function of small heat-shock proteins

 Chaperones bind their client proteins in stable complexes, thereby inhibiting aggregation.

• Under stress conditions, sHsps bind partially unfolded proteins in ATP-independent manner.

• The substrates are refolded by ATP-dependent chaperone systems.

Crystals

2022

Graphical abstract: Cycle of formation and dissociation of sHsp/substrate complexes

J. Mol. Biol. 427, 1537–1548 (2015) J. Mol. Biol. 167157 (2021)

Introduction Molecular Architecture of Small Heat Shock Proteins

· sHSPs are built around a conserved α -crystallin domain.

- ACD forms a dimeric building block (α -crystallin dimer) and assembles into oligomers through interactions in sequence-variable N-terminal domain and C-terminal tail.

2022

Introduction The first crystal structure of a small heat shock protein

a-crystallin domain

Crystals 2022

Nature. 394, 595-599 (1998)

Cryo-EM micrograph with the 2D class averages

Cryo-EM structure of MjsHSP16.5

Representative hydrophobic residues fitted into the cryo-EM map

Atomic model built into the cryo-EM map

Local resolution of the cryo-EM structure

Oligomerization of MjsHSP16.5

Results and Discussion 2. Comparison of the cryo-EM structure with crystal structure

Results and Discussion 3. Conformations of the cryo-EM N-terminal regions invisible in the crystal structure of MjsHSP16.5

 \cdot Secondary structure predictions using different algorithms show that the N-terminal region of MjsHSP16.5 has a tendency to form a β strand.

		1 10 20	30
			•
) 9. 500 7, 7975) 917 99,	ro r.rr r r r r r r r r r r r r r r r r
	Sequence	MFGRDPFDSLFERMFKEFFA	TPMTGTTMIQSSTGIQIS
Prediction method	Chou-Fasman	нинининини	EEEEEEEEEEE
	Garnier–Osguthorpe–Robson	ЕННННННННННН	EEEEEEEEE
	Neural network	ннннннннн	EEEEEEE
	JPred	нннннннннннн	EEEEE
	PSIPRED	нннннннннннн	EEEEEEE-
	RaptorX	нннннннннннн	EEEEE

· Cryo-EM image reconstruction shows additional N-terminal residues.

Results and Discussion 3. Conformations of the cryo-EM N-terminal regions invisible in the crystal structure of MjsHSP16.5

Cryo-EM maps of the N-terminal regions beneath the α -crystallin domains

Conformation of the N-terminal region showing an intra-subunit interaction

Results and Discussion 3. Conformations of the cryo-EM N-terminal regions invisible in the crystal structure of MjsHSP16.5

Conformations of the N-terminal regions showing the inter-subunit interactions

Results and Discussion 4. Molecular sizes of MjsHSP16.5 at different temperatures

Molecular sizes of MjsHSP at different temperatures analyzed by Dynamic Light Scattering and transmission election microscopy.

Results and Discussion 5. Functional identification of N-terminal domain

E. coli cell lysate thermal protection assay

1: before heating

Crystals 2022

-40

-30

-20

-10

100

%Pd

Conclusions

• Using the single-particle cryo-electron microscopy (cryo-EM) technique, we reconstructed the MjsHSP16.5 24-subunit oligomer to a 2.5-Å resolution.

• The cryo-EM image reconstruction reveals additional N-terminal residues which are absent in most of MjsHSP16.5 crystal structures.

- Orientation of an extra β -strand is identified in N-terminal domain.

- N-terminal and C-terminal regions help stabilize the oligomeric form of MjsHSP16.5.
- N-terminal domain has an important role in the holding chaperone activity of MjsHSP16.5.

Acknowledgments

Kim Group

Structural Biology Laboratory

Sungkyunkwan University School of Medicine

Professor Kyeong Kyu Kim

- Dr. Truc Kim

Korea Basic Science Institute

- Dr. Bum Han Ryu (IBS)

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A1A01073018).