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Abstract: Biochar, made by pyrolysis of various organic materials such as plants, can amend soil
physicochemical properties and improve the efficiency of pre-planted incorporated (PPI) herbicides.
The excessive consumption of PPl herbicides results in environmental predicaments that improving
PPI herbicides' efficacy by changing soil biological properties might solve this problem. Trifluralin,
a PPI, is recommended against annual broadleaf weeds such as velvetleaf in soybean fields. In the
present study, treatments included normal soil (NS) (sand 30% + silt 35% + clay 35%) and manipu-
lated soil (MS) (sand 27% + silt 32% + clay 32% + biochar 9%). Two blocks of NS received recom-
mended dose (RD) (1.7 lit/ha) (NS+RD) and a reduced dose (1.2 lit/ha) (NS+ReD) of trifluralin. Mean-
while, the block of MS was exposed to the reduced dose (MS+ReD) of trifluralin. Two days after
herbicide treatments, seeds of Abutilon theophrasti were sowed. Then, seven days after sowing, the
growth of weeds was monitored and weed control percentage was calculated using the arcsine
model based on observed data. Results showed that the NS+RD was the most effective treatment in
velvet control (100%), followed by MS+ReD (93.5%) with no significant difference. The NS+ReD
treatment resulted in 81% weed control showing significant differences with the NS+RD and
MS+ReD. Thus, it seems that biochar acts as a neutral buffer and decreases the necessity of PPI
herbicides application in soybean fields. The biochar application can potentially reduce soil con-
tamination, weed resistance, environmental pollution, and the adverse effects of PPI herbicides on
the soil microbial population.
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1. Introduction

Biochar, a carbon-rich material, is produced by pyrolysis of biomass under limited
oxygen [1]. It is well-documented that biochar acts as a soil amendment through increas-
ing cation exchange capacity, water retention, microbial activity, nutrient availability, and
sequestering toxic heavy metals [2]. Nevertheless, the role of biochar in ameliorating
physiochemical properties of soils [3] should be considered as a soil improver in agricul-
tural ecosystems, especially in crop protection.

Soybean fields usually contain a complex of grass and broadleaf weeds such as vel-
vetleaf (Abutilon theophrasti) from Malvaceae that can reduce the final yield of soybean [4].
For weed control in these agroecosystems, chemical herbicides are commonly used. Tri-
fluralin, a pre-planted incorporated (PPI) herbicide, is recommended against annual
grasses in soybean fields like A. theophrasti [5]. This herbicide belongs to dinitroanilines
that act as an inhibitor of microtubule synthesis [6]. Excessive usage of PPI herbicides
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caused strongly adsorbed to soil particles with negligible leaching [7] and then make ad-
verse effects on soil microbial population such as reduction in fauna diversity [8], soil
contamination, environment, and especially groundwater pollution [9]. Thus, according
to the PPI herbicides behavior in soils, it seems that the changes in soil physicochemical
characteristics can solve the abovementioned problems by improving the efficiency of PPI
herbicides and reducing their consumption.

The present study aimed to evaluate biochar potential to reduce the need for triflu-
ralin in velvetleaf control through changing soil biological conditions in loam soil of soy-
bean fields.

2. Materials and Methods

The effect of biochar application in soybean fields in order to control velvetleaf was
assessed in three blocks and three independent biological replicates in the randomized
complete block design. Two blocks were normal soil (NS) with loam soil containing sand
(30%), silt (35%), and clay (35%) with pH = 7.55 and EC equal to 1.99 dS. M-1. Another
block had manipulated soil (MS) that contained sand (27%), silt (32%), clay (32%), and
biochar (9%) with pH =7.99 and EC equal to 1.46 dS. M. All of the blocks were prepared
in 3 m x 3 m terraces.

Two blocks of NS received recommended dose (NS+RD) (1.7 lit/ha) and reduced dose
(NS+ReD) (1.2 lit/ha) of trifluralin (Trifluralin®48% EC, Ariashimi Company, Iran), respec-
tively. The sole block of MS received only a reduced dose of herbicide (MS+ReD). All
herbicide treatments were accomplished in a pre-planted form combined with soil in 5 cm
depth when soil humidity was 20%. Two days after herbicide treatments, the authenti-
cated and uniform seeds of A. theophrasti were sown.

The growth of seedlings was monitored for six weeks after sowing for data collection.
Then, observed data were changed to numerical percent with inverse trigonometric func-
tions (ArcSin X). The Shapiro-Wilk’s test and Levene’s test were used for normalization
and equality of variances, respectively. Finally, the one-way ANOVA followed by the
Tukey test (P<0.05) was subjected to comparison means.

3. Results and Discussion

Results showed that velvetleaf control in NS+RD was 100% followed by MS+ReD
with 93.5% control and no significant difference (F=9.326, P=0.092). Meanwhile, the vel-
vetleaf control was measured to be 81% in NS+ReD having significant differences with
NS+RD (F=1.753, P=0.013) and MS+ReD (F=2.159, P=0.031), respectively. According to the
observed results, biochar addition to the loam soil of soybean fields can reduce herbicide
consumption. Previous studies have reported the biochar ability on soil amendment and
its impact on the fate and effects of herbicides in soil [10]. Due to its higher organic carbon
content and specific surface area, biochar acts as the most efficient sorbent for herbicides
in the soil [11]. Thus, it is suggested that the biochar addition to the loam soils of soybean
fields can improve the trifluralin efficiency in velvetleaf control by magnifying herbicide
persistence that leads to decreasing herbicide application.

It is worth mentioning that the biochar addition to the soil can also enhance the ad-
sorption of herbicides by altering their mobility which leads to decreased herbicide leach-
ing in soil [12]. Hence, to all appearances, low dose usage of trifluralin in loam soil of
soybean fields can be related to biochar role in high adsorption of herbicide molecules to
soil particles. Consequently, biochar application leads to promoting trifluralin perfor-
mance in velvetleaf control. The issue seems to be even more serious taking groundwater
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pollution into account. On the other hand, decreasing the soil microbial communities' ex-
posure to the PPI herbicides can be added to the benefits of biochar addition to the soil
[13].

4. Conclusion

Biochar is a valuable soil amender that can help to reduce PP herbicides in soil which
profoundly contributes to gaining sustainable agriculture and improves environmental
health. Finally, biochar application in long term supports soil microbial population and
reduces soil contamination, environmental pollution, and weed resistance as well.
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