IOCAG 2022

The 1st International Online Conference on Agriculture: ADVANCES IN AGRICULTURAL SCIENCE AND TECHNOLOGY 10-25 FEBRUARY 2022 | ONLINE

MDPI

Real-Time IoT-Enabled Water Management for Rooftop Urban Agriculture Using Commercial Off-the-Shelf Products

By: Tamer Almaaitah¹, Darko Joksimovic¹, and Tahmid Sajin²

¹Department of Civil Engineering, Ryerson University, Toronto, ON, Canada ²Rogers Communications, Brampton, ON, Canada

Outline

- Introduction: Urban Agriculture (UA) and Internet of Things (IoT)
- Learning objectives
- Study site: Urban Farm Living Lab (UFLL)
- Hands-on guide to low-cost wireless monitoring of rooftop runoff
- Lessons learned and key takeaways

Introduction

- Increased interest in urban agriculture and rooftop farming
- The need to:

MDPI

agriculture

- > Improve the stormwater management on rooftops farms at a lower cost
- > Inform urban planning and policy
- Develop design guidance
- Internet of Things (IoT) provides us with new opportunities: Wi-Fi, Bluetooth and LPWAN
- LoRaWAN: long-range transmission and low-power requirement

3

ryerson.ca

Learning Objectives

The objectives of this presentation are to:

• Understand how the Internet of Things (IoT) can transform the stormwater

management of a rooftop farm into a more efficient and innovative process

- Develop a low-cost sensor node that can send data wirelessly through the internet
- Integrate the node into a cloud-based platform and dashboard where data can be accessed in real-time and downloaded remotely

 Rooftop of George Vari Engineering and Computing Centre at the campus

agriculture

- Intensive green roof in 2004 and converted into a rooftop farm in 2014
- Grows around 3,500 to 4,500 kilograms
 of produce annually
- Split into zones (A, B, C and D) with three roof drains equipped with V-notch weirs
- Weirs were designed to allow flow monitoring

4-Step Hands-On Approach

STEP 1: Sensor node design

#	Item	Price in \$USD
1	Dragino LSN50 Generic LoRaWAN node	\$43
2	eTape liquid level sensor – 5"	\$49
3	Polycarbonate tube and housing cap	\$14
4	Resistor and wire tube	\$8
TOTAL		\$115

milonetech.com/

7

Voltage/resistance divider

agriculture

MDPL

- Utilizing two pins of the eTape (P2, P3) and a resistor connected between P3 of the eTape and the GND of the LSN50
- P3 of the eTape delivers the analog input in volts
- The resistor can be in the range of 0 to 2000 ohm
- Corrected resistance output can be measured and used for calibration and into the code

STEP 2: Programming and calibration

Using:

- Device EUI
- APP Key
- Application EUI

- Working with Bytes
- Commercially-available nodes usually come with their own payloads
- <u>Slight modification may</u> <u>be necessary</u>
- Varying water level to get the corresponding voltage reading

STEP 2: Programming and calibration

Varying water level to get the corresponding voltage reading

STEP 3: Field deployment

STEP 4: Data Smoothing

- The developed sensor node provided consistency and highquality data over the season
- To address the sensor noise, water level data were smoothed to reduce dispersion and remove outliers using the exponential smoothing (ES) method.

STEP 5: Cloud integration and visualization

agriculture

MDPL

agriculture

MDPI

Lessons learned and key takeaways

• Careful water use and managed stormwater have become imperative in achieving sustainability goals through urban farming

agriculture

- The reduced cost of sensors and communication nodes and the availability of opensource projects encourage the runoff monitoring of rooftop farms
- Wireless sensor nodes allow easier deployment of various sensors and increase flexibility for monitoring
- Future research will have to analyze energy usage and optimization further

IOCAG 2022

The 1st International Online Conference on Agriculture: ADVANCES IN AGRICULTURAL SCIENCE AND TECHNOLOGY 10-25 FEBRUARY 2022 | ONLINE

MDPI

Real-Time IoT-Enabled Water Management for Rooftop Urban Agriculture Using Commercial Off-the-Shelf Products

End of Presentation – Thank You

Tamer Almaaitah^{1*}, Darko Joksimovic¹, and Tahmid Sajin²

* tamer.almaaitah@ryerson.ca