

Application of NaCl-plant extracts to decrease the costs of microfiltration for winery wastewater treatment

Nuno Jorge^{1,2}^{*}; Ana R. Teixeira²; Leonilde Marchão²; Piebiep Goufo³; Marco S. Lucas²; José A. Peres²

 ¹ Escuela Internacional de Doctorado (EIDO), Campus da Auga, Campus Universitário de Ourense, Universidade de Vigo, As Lagoas, 32004, Ourense, España
² Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal

³ Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal

* njorge@uvigo.es

1st International Online Conference on Agriculture - Advances in Agricultural Science and Technology

Agricultural Water Management

10 – 25 February 2022

Introduction	Objectives	Material and	Results and	Conclusions
introduction	Objectives	methods	discussion	Conclusions

Winery wastewater main characteristics

Introduction	Objectives	Material and methods	Results and discussion	Conclusions
--------------	------------	----------------------	------------------------	-------------

Physical-chemical treatments of wastewater

Coagulation-flocculation-decantation (CFD)

Introduction

Objectives

Material and methods

Results and discussion

Conclusions

Plant species colected during this work, for the development of Na-Cl plant extracts

Works performed with plant based coagulants

Ephraim Vunain^{a,*}, Effita Fifi Masoamphambe^b, Placid Mike Gabriel Mpeketula^b, Maurice Monjerezia, Anita Etale

artment of Chemistry, Chancellor College, University of Malawi, P.O. box 280, Zomba, Malawi artment of Biological Science, Chancellor College, University of Malawi, P.O. box 280, Zomba, Malawi artment of Chemistry, University of the Winwettersand, Private Bag 2 TO WITS 2003, Johannesburg, South Africa

ARTICLE INFO	A B S T R A C T
Roywords: Moringa olejfrea Natural coogulant Watewater clarification Physiologia containation Merrokal containation Matewater treatment	For many communities in the developing world, conventional water treatment methods are often vanifordab because of the high cost associated with threa and inavailability of chemical cognitism in the developing countries. Employing Moringe oleffort seed (as powder or extracts) to treat municipal domestic waterwater plants in developing countries. In the present study, domestic waterwater form a local waterwater treatmen plants in developing countries. In the present study, domestic waterwater from a local waterwater treatmen plants in developing countries. In the present study, domestic waterwater from a local waterwater treatmen plants in developing countries. In the present study, domestic waterwater from a local waterwater treatment westigate the potential of Moringe oligity are of powder in hards tests: the objective was to vestigate the potential of Moringe oligity are of powder in hards tests: the objective was to trachability from 257 to 38.8 Repledomente: turbidity unit (VTU), increased pH from 4.3 to 7.1, and set to disployed unid(CTU) at intaching recommended by World Haldhold Expanziationg gardinges for displantiation for displantiates for displantiations for distributes and disployed wide(CTU) at intaching recommended by World Haldhold (Stepanziation gardinges for displantiation gardinges for displantiation gardinges for displantiation gardinges for displantiation gardinges for distributes and the to disployed wide(CTU) at instandam recommended by World Haldhold (Stepanziation gardinges) for displantiation gardinges

against Salmonella and Shigella spp. However, each dose of Moringa oleifera seed po settling (contact) time for microbe reduction before regrowth of microbes.

Acacia dealbata Link (pollen)

Chelidonium majus L. (seeds)

Daucus carota L. (seeds)

Tanacetum vulgare L. (seeds)

Vitis vinífera L. (rachis)

Introduction	Objectives	Material and	Results and	Conclusions
Introduction	Objectives	methods	discussion	Conclusions

Example of NaCl plant extract used in wastewater treatment

Brazilian Journal of Chemical Engineering

ISSN 0104-6632
Printed in Brazil
www.abeq.org.br/biche

Vol. 29, No. 03, pp. 495 - 501, July - September, 2012

IMPROVEMENT OF THE FLOCCULATION PROCESS IN WATER TREATMENT BY USING Moringa oleifera SEEDS EXTRACT

J. Sánchez-Martín^{1*}, J. Beltrán-Heredia¹ and J. A. Peres²

¹Department of Chemical Engineering and Physical Chemistry, University of Extremadura, Phone: + 34 924289300, ext. 89033, Avta. de Elivas, s/n. 06071, Badajoz, Spain. ¹E-mail: jsamma@unex.es; jbelther@unex.es ²Department of Chemistry, University of Tras-0s-Montes e Alto Douro, Quinta Dos Prados, 5001-801, Vila Real, Portugal.

(Submitted: September 29, 2011; Revised: December 16, 2011; Accepted: February 15, 2012)

pН

Stirring Time

Coagulant dosage

S
\mathbf{O}
LD
L.
S
C
0
t .
σ
Ō

River water, taken from the Guadiana river at Badajoz (Spain) (Characterization of raw wastewater)

Parameter	Value	Units
Conductivity	400	μS cm ⁻¹
pH	7.5	
Suspended solids	15	mg L ⁻¹
Total solids	452	mg L ⁻¹
Turbidity	123.3	NTU
Calcium	37.7	Ca ²⁺ mg L ⁻¹
Hardness	152	CaCO₃ mg L ⁻¹
Ammonium	1.81	$N mg L^{-1}$
Nitrate	5.3	$NO_3^- mg L^{-1}$
Nitrite	0.033	N mg L ⁻¹
Chloride	40.4	Cl ⁻ mg L ⁻¹
KMnO ₄ oxidizability	34.6	$O_2 \text{ mg } L^{-1}$
Phosphate	0.044	$P mg L^{-1}$
Total phosphorus	0.064	$P mg L^{-1}$
Total coliforms	800	Colonies per 100 mL
Fecal coliforms	400	Colonies per 100 mL
Fecal streptococcus	140	Colonies per 100 mL

Turbidity removal = 98 %

Variation of the agitation time in the slow stages between 5 and 60 minutes

Variarion of dosage: 8 and 16 mg L⁻¹

96 % and 94 % removal in the case of total and fecal coliforms

100 % removal in the case of fecal streptococcus

Example of Microfiltration used in wastewater treatment

Coagulation/Flocculation with Moringa oleifera and Membrane Filtration for Dairy Wastewater Treatment

G. A. P. Mateus · D. M. Formentini-Schmitt · L. Nishi · M. R. Fagundes-Klen · R. G. Gomes · R. Bergamasco

Received: 3 April 2017/Accepted: 3 August 2017/Published online: 22 August 2017 C Springer International Publishing AG 2017

> The application of CFD process enhanced the microfiltration process

A plant based coagulante was used

There was a high removal of turbidity from the dairy wastewater

Initial characteristics of the DW, residual values of physicochemical parameters after CFS treatment with 3000 mg/L of coagulant, and removal efficiency of the CFS process

Parameter	Initial values	Residual values	Removal efficiency (%)
COD (mg O2/L)	4610	4103	11
Color (mg Pt-Co/L)	4141	1925	53
Particle size	7560.5	1907.2	_
pH ^a	4.03	4.6	-
PDI	0.791	0.536	_
Turbidity (NTU)	520	208	60
Zeta potential	- 8.45	0.42	-

^a Only residual value

To our knowledge, the combined coagulation-flocculation-decantation-microfiltration processes were never applied to winery wastewater treatment and its effects in organic carbon, turbidity, total sus-pended solids and phenolic compounds reduction are unknown.

Therefore, the objectives of this work are

Introduction	Objectives	Material and methods	Results and discussion	Conclusions

Winery wastewater characterization

Parameters	Portuguese Law Decree nº 236/98	ww
рН	6.0-9.0	4.0±0100
Electrical conductivity (µS/cm)		62.5±0.361
Turbidity (NTU)		296±2.000
Total suspended solids – TSS (mg/L)	60	750±1.528
Chemical Oxygen Demand - COD (mg O ₂ /L)	150	2145±1.000
Biochemical Oxygen Demand - BOD ₅ (mg O ₂ /L)	40	550±1.155
Total Organic Carbon – TOC (mg C/L)		400±4.040
Total Nitrogen – TN (mg N/L)	15	9.07±0.010
Total polyphenols (mg gallic acid/L)	0.5	22.6±0.100
Biodegradability – BOD ₅ /COD		0.26±0.015
Aluminium (mg/L)	10.0	0.00±0.000
Calcium (mg/L)		1.07±0.010
Cobalt (mg/L)		0.00±0.000
Copper (mg/L)	1.0	0.014±0.001
Iron (mg/L)	2.0	0.05±0.006
Magnesium (mg/L)		0.51±0.006
Manganese (mg/L)	2.0	0.016±0.001
Potassium (mg/L)		20.5±0.015
Sodium (mg/L)		0.19±0.007
Zinc (mg/L)		10.53±0.006

Production of wine

Production of wastewater

Colloid with negative charge

Coagulants

Filtration process

VACUUBRAND GMBH + CO pump

in-plane bending vibrations

FTIR spectrum of *Acacia dealbata Link*. (pollen), *Chelidonium majus L*. (seeds), *Daucus carota L*. (seeds), *Tanacetum vulgare L*. (seeds) and *Vitis vinifera L*. (rachis).

Material and **Results and Objectives** Conclusions Introduction methods discussion 34 phenolic compounds were initially analysed by **HPLC-DAD** and peaks were compared with plants; \geq

Characterization of plants

- It were separated 4 major types of phenolic compounds (hydroxybenzoic acids (280 nm), cinnamic \succ acids (320 nm), flavonoids (350 nm) and anthocyanins (520 nm));
- Results showed diferences between the phenolic composition in each plant. \triangleright

IntroductionObjectivesMaterial and
methodsResults and
discussionConclusions

Coagulation-flocculation-decantation-microfiltration

Best operational conditions of NaCl plant extract *Acacia dealbata Link*. (pollen), *Chelidonium majus L*. (seeds), *Daucus carota L*. (seeds), *Tanacetum vulgare L*. (seeds) and *Vitis vinífera L*. (rachis) and aluminium sulfate for CFD process, as follows: $[TOC]_0 = 400 \text{ mg C/L}$, turbidity = 296 NTU, TSS = 750 mg/L, temperature 298 K, sedimentation time 12 h, pump flow rate of 1.9 m³/h, glass microfiber filters, with micrometric retention of 1.2 µm.

	Phase one						
	Phase two						
			Pha	ase three			
					Phase four		
Coopulant		Deseres	Foot with			Flocculant	
Coagulant	рн	Dosage	Fast mix	Slow mix	Flocculant type	dosage	
		g/L	rpm/min	rpm/min		mg/L	Microfiltration
	2	0.5	450/2	20/20	Activated sodium	50	
Acacia aealbata Link. (5%)	3	0.5	150/3	20/20	bentonite	50	
		0.5	450/0	50/20	Activated sodium	_	
Chelidonium majus L. (5%)	3	0.5	150/2	50/30	bentonite	5	Glass microfiber
Daucus carota L. (5%)	3	0.5	150/3	20/20	Activated charcoal	5	filters
Tanacetum vulgare L. (5%)	3	0.1	150/3	20/20	Potassium caseinate	100	
Vitis vinífera L. (5%)	3	0.1	150/3	20/20	Potassium caseinate	5	
Aluminium sulfate (10%)	5	0.5	150/2	50/30	Activated charcoal	50	

Phase one showed that NaCl plant extracts are more efficient at pH 3.0

The NaCl plant extracts require similar or lower dosage than aluminium sulfate

Some flocculants are more efficient when combined with the coagulants

The CFD process enhanced the microfiltration efficiency

Introduction

Objectives

vinífera L.

Material and methods

Results and discussion

Conclusions

Results showed that performance of microfiltration in raw WW and in coagulated WW with NaCl plant extract Acacia dealbata Link. (pollen), Chelidonium majus L. (seeds), Daucus carota L. (seeds), Tanacetum vulgare L. (seeds) and Vitis vinifera L. (rachis) and aluminium sulfate had a :

TOC removal of 8.4, 8.5, 29.7, 17.7, 40.8, 38.6 and 26.1%

Turbidity removal of 97.2, 97.1, 99.7, 98.2, 99.2, 98.4 and 99.7%

TSS removal of 94.8, 94.7, 95.3, 94.8, 95.5, 95.0 and 95.6%

Evolution of (a) TOC, (b) turbidity and (c) TSS removal at different flocculant concentrations (5 – 500 mg/L) in combined coagulation-flocculation-decantation-microfiltration process. CFD/MF operational conditions, as follows: [TOC]_o = 400 mg C/L, turbidity = 296 NTU, TSS = 750 mg/L, temperature 298 K, sedimentation time 12 h, pump flow rate of 1.9 m³/h, glass microfiber filters, with micrometric retention of 1.2 µm.

CFD/MF operational conditions, as follows: $[TOC]_0 = 400 \text{ mg C/L}$, turbidity = 296 NTU, TSS = 750 mg/L, temperature 298 K, sedimentation time 12 h, pump flow rate of 1.9 m³/h, glass microfiber filters, with micrometric retention of 1.2 µm.

(3) The application of CFD/MF process is an economic and sustainable technology for WW treatment

Acknowledgements

• This research was funded by the North Regional Operational Program (NORTE 2020) and the European Regional Development Fund (ERDF) and authors express their appreciation for the financial support of the Project AgriFood XXI, operation nº NORTE-01-0145-FEDER-000041, and to the Fundação para a Ciência e a Tecnologia (FCT) for the financial support provided to CQVR through UIDB/00616/2020 and CITAB through UIDB/04033/2020. Marco S. Lucas also thanks the FCT for the financial support provided through the Investigator FCT-IF/00802/2015 project. Ana R. Teixeira also thanks the FCT for the financial support provided through the doctoral scholarship UI/BD/150847/2020.

NIÃO EUROPEIA

Thank you for your attention

