

UNIVERSITY OF WEST ATTICA

Development of a UPLC-Q-ToF-MS Method for the Determination

of Sulforaphane and Iberin in Cruciferous Vegetables

Panagiota-Kyriaki Revelou^{1,2}, Marinos Xagoraris¹, Alexandros Michail², Maroula G. Kokotou¹, Violetta Constantinou-Kokotou^{1*}

¹ Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece

² Department of Food Science and Technology, University of West Attica, Ag. Spyridonos str, Egaleo 12243, Athens, Greece

* Correspondence: vikon@aua.gr; Tel.: +30 2105294261

UNIVERSITY OF WEST ATTICA

Cruciferous vegetables

Plant foods belonging to the *Brassicaceae* family and the order of *Brassicales*

The consumption of these vegetables has been correlated with a reduced risk of non-communicable diseases like cancer, diabetes and cardiovascular disease

Common cruciferous vegetables

Cruciferous vegetables

The health benefits of the cruciferous vegetables can be attributed to the presence of isothiocyanates released after the enzymatic hydrolysis of glucosinolates by myrosinase

Most important isothiocyanates, due to their anti-inflammatory capacity, are **sulphoraphane** (1-isothiocyanato-4-(methylsulfinyl)-butane) and **iberin** (1-isothiocyanato-3-methylsulfinylpropane), produced from the enzymatic hydrolysis of glucoraphanin and glucoiberin glucosinolates

Zhao et al. *European Journal of Pharmacology*, **2018**, 824, 1-10 Heiss et al. *Journal of Biological Chemistry*, **2001**, 276, 32008-32015 Subedi et al. *Cells*, **2019**, 8, 194 Shibata et al. *Journal of Biological Chemistry*, **2014**, 289, 32757-32772 Wang et al. *Journal of Agricultural and Food Chemistry*, **2005**, *53*, 1417-142

Molecular structures of (a) sulforaphane and (b) iberin

Due to the lack of chromophores, high volatility and precipitation in the liquid chromatography column, the analytical determination of these isothiocyanates is difficult

A very reliable technique for the determination in cruciferous vegetables is the use of **Ultra Performance-Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-ToF-MS)**

Materials

Reagents

-Sulforaphane (synthesized according to D'Souza et al. 2003)

-Iberin

- -Dichloromethane (CH₂Cl₂)
- -Methanol (LC-MS grade)
- -Ultra-pure water (MilliQ purification system)

Standard Solutions

-Sulforaphane and iberin 1000 mg/L in MeOH

-Solution of 10 mg/L in MeOH for the full scan and MS/MS experiments -Concentrations of 0.1, 0.5, 1.0, 3.0, 5.0, 8.0, 10.0 and 12.0 mg/L by dilution for the construction of calibration curves

Samples

-Green broccoli, purple broccoli (sample 1), white cauliflower, white cabbage, red cabbage, watercress and radish from Chalkida, Greece. -Purple broccoli (sample 2) from Achaia, Greece

Broccoli and cauliflower florets, cabbage and watercress leaves, and roots of radish were used for the preparation of extracts

The samples were lyophilized and ground to a fine homogenous powder using a mortal and pestle

Preparation of extracts

- 1. 25 mL of distilled water (pH 7.0) were added into 1 g of dry vegetable
- 2. Incubation in water bath for 3 hours in 45±3 °C
- 3. The mixture was left outside for 30 min to reach room temperature
- 4. 30 mL of CH_2Cl_2 added and stirred for 15 min
- 5. Filtration using a Buchner funnel with Whatman filter paper grade 1
- 6. Double extraction of the solid residue with 30 mL CH_2Cl_2
- 7. Combination of the filtrates into a separation funnel to remove excess water
- 8. Extract dried with 1 g anhydrous sodium sulfate
- 9. Evaporation of the solvent to dryness at 35 °C on a Heidolph II rotary evaporator
- 10. Dissolution of the residue in 1 mL MeOH
- 11. Injection of the extract to the LC-MS system after a 10-fold dilution with MeOH

The measurements were performed in triplicates

UPLC-Q-ToF-MS

- The high resolution mass spectrometry spectra were recorded on an Agilent 6530 Quadrupole Time of Flight LC-MS system (Q-ToF-MS), with an ESI source, coupled with Agilent 1290 Infinity UPLC system and an autosampler
- Nitrogen was used as the collision gas and positive electrospray ionization (ESI) was used for the MS experiments
- The data acquisition was carried out with Agilent MassHunter software

Agilent 6530 LC-Q-ToF-MS

Q-TOF-MS conditions

- Drying gas, 12 L/min
- Gas temperature, 300 °C
- Fragmentor, 150V
- Skimmer, 65 V

- Capillary voltage, 4000 V
- Nebulizer gas, 45 psi
- Acquisition rate, 1 spectra/s (threshold 200 Abs, 0.01% rel.)
- MS scan range, 50-1500

MS/MS experiments

- -An auto-MS/MS method was developed with the following parameters: MS/MS acquisition rate, 1 spectra/s (threshold 5 Abs, 0.01% rel.); MS/MS scan range, 50-1500; collision energy slope, 5 V; offset, 2.5 V; preferred charge state, 2, 1, unknown
- -The mass accuracy of the Q-ToF-MS was calibrated before each analysis using a calibrant solution for scanning up to m/z 1500
- -Mass calibration of the Q-ToF MS was controlled by constant infusion of a reference mass solution into the source of the Q-ToF-MS during the analysis with the reference ions 121.0509 and 922.0098
- -The raw data files were processed with Agilent Mass Hunter Qualitative Analysis software

Chromatographic study

- -Performed with an Agilent Zorbax C18 column
- -Mobile phase: ultra pure water/0.1% formic acid (A) and MeOH/0.1% formic acid (B)
- -Gradient: 0 min: 5% B; 1 min: 5% B; 8.5 min: 95% B; 9.5 min: 95% B; 11.5 min: 5% B;
- 26.5 min: 5% B
- Total run time including column equilibration: 26.5 min
- -Injection volume: $2 \ \mu L$
- -Flow rate: 0.4 mL/min
- -Column oven temperature: 27 °C

Mass spectrometry study

(a) Full scan mass spectrum of sulforaphane $[M+H]^+$ with Δ 0.56 ppm $[M+Na]^+$ with Δ 1.00 ppm

(**b**) MS² mass spectrum of sulforaphane

Mass spectrometry study

(c) Full scan mass spectrum of iberin $[M+H]^+$ with Δ 1.22 ppm $[M+Na]^+$ with Δ 0.54 ppm

(**d**) MS² mass spectrum of iberin.

AGRICULTURAL UNIVERSITY OF ATHENS

UNIVERSITY OF WEST ATTICA

Results and discussion

Method Validation

Calibration curves for: (a) Sulforaphane; (b) Iberin

Limit of detection (LOD) and quantification (LOQ) for **sulforaphane** were 1.19 mg/L and 3.61 mg/L while for **iberin** the LOD and LOQ were calculated at 1.11 mg/L and 3.35 mg/L, respectively

UNIVERSITY OF WEST ATTICA

Results and discussion

Chromatogram

(a) Extracted ion chromatograms of sulforaphane and iberin in green broccoli extract

Mass spectrometry study

(**b**) Mass spectrum of iberin in green broccoli extract

(c) Mass spectrum of sulforaphane in green broccoli extract

Content of sulforaphane and iberin in various cruciferous vegetables in μ g/g dry weight±S.D.

Compound	Green broccoli	Purple broccoli 1	Purple broccoli 2	White cauliflower	White cabbage	Red cabbage	Radish	Watercress
Sulforaphane	660.14±34.29	15.05±0.43	210.11±9.76	14.89±1.62	73.71±1.27	143.83±3.44	9.25±0.14	4.44±0.53
Iberin	20.95±0.67	144.98±3.56	<lod< th=""><th>47.48±5.07</th><th>84.57±0.20</th><th>30.12±0.13</th><th>0.83±0.09</th><th><lod< th=""></lod<></th></lod<>	47.48±5.07	84.57±0.20	30.12±0.13	0.83±0.09	<lod< th=""></lod<>

 \bullet Green broccoli was found to contain the highest amount of sulforaphane (660.14±34.29 $\mu g/g$ dry weight)

•The results are in accordance with literature

Conclusions

- A rapid and accurate analytical method for the simultaneous quantification of sulforaphane and iberin in cruciferous vegetables was developed using high resolution mass spectrometry
- The Q-TOF mass analyzer allowed high resolution and accuracy, sensitivity and selectivity, offering rapid and effective food analysis
- The content of sulforaphane and iberin in cruciferous vegetables was in agreement with literature
- To our knowledge, this is the first report employing high resolution mass spectrometry for the simultaneous determination of sulforaphane and iberin in cruciferous vegetables

AGRICULTURAL UNIVERSITY OF ATHENS

UNIVERSITY OF WEST ATTICA

Thank you for your attention