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Abstract: Greenhouse cultivation is one of the most crucial circular economy systems in agriculture 

that allows the maximum production in less cultivation area, with minimum inputs and low envi-

ronmental impact. The data generated in high-tech and sophisticated greenhouse operations are 

provided by a variety of different sensors that enable a better understanding of the operational en-

vironment. In this study a learning algorithm namely Gradient Boosting Machine was tested using 

the generated data-base in order to estimate different type of stress in tomato crop. The examined 

model perform qualitative classification of the data, depending on the type of stress (such as no 

stress, water stress and cold stress). For the comparison was selected 10-fold cross validation strat-

egy on the 10,763 samples from the training set. The dataset was divided in two parts, one for train-

ing-validation 80% (8610) and a second one for testing 20% (2152). The cross-validation process was 

repeated 50 times. Among the data entries was used to build the model, the leaf temperature was 

one of the highest in the feature importance with ratio 0.51. According to the results, the Gradient 

Boosting algorithm defined all the cases with high accuracy. Particularly, the model find correct all 

the 372 samples of the cold stress plants, the 1305 out of 1321 samples of the no stress plants and the 

431 out of 452 samples of the water stress plants. In these results, the model preserved accuracy of 

98% in the testing performance and more than 98% in the validation performance. This research is 

co-financed by Greece and the European Union (European Social Fund- ESF) through the Opera-

tional Programme «Human Resources Development, Education and Lifelong Learning» in the con-

text of the project “Reinforcement of Postdoctoral Researchers—2nd Cycle” (MIS-5033021), imple-

mented by the State Scholarships Foundation (ΙΚΥ). 
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1. Introduction 

The most important call for a sustainable future in the food sector is to produce more 

food per hectare without expanding agricultural land in order to feed the rapid growth of 

the world population. To achieve this, there is a need to increase the productivity in 

Greenhouse hydroponic cultivation by redesigning their operation control system [1]. 

The development of a machine learning model (ML) that will combine climatic and 

crop physiology data for detecting different type of stress will result to the improvement 

of the greenhouse operation. 

Up to now, it wasn’t feasible to incorporate in a ML model crop physiology data, 

since the most agronomy factors are measured using labor and time-consuming protocols 

[2]. Leaf temperature is one of the few indicators that can be measured in a time-series 

protocol producing a large volume database required in order to build a machine learning 

model. However leaf or crop temperature is an unstable factor that can present an intense 
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variation according to the climatic and abiotic conditions and cannot be used on its own 

to estimate different types of crop stress [3]. The combination of leaf temperature with the 

photosynthesis (Ps) could improve the methodology of defining the type of stress per-

formed in a vegetable cultivation. 

Recently, the Photochemical Reflectance Index (PRI) that is correlated with rapid 

changes in de-epoxidation of the xanthophylls cycle and photosynthesis efficiency (Ps) 

with very good results, is able to be measured using soft-sensor (i.e., mathematical models 

using real-time sensor data) performing a time-series database. 

In this research the methodology of developing a Gradient Boosting algorithm is pre-

sented in order to build ML model that will combine climatic data with leaf temperature 

and photosynthesis rate. In this sense, a multisensory tower placed within the greenhouse 

was used to record how the physiology status of the tomato plants was changing accord-

ing to their surrounding microclimate. The plants were cultivated under extreme condi-

tions of air temperature and water in the root zone. The resulted database was used to 

train and test the model. 

2. Material & Methods 

The measurements were carried out from May to December of 2019 in one of the five 

compartments of a multi-tunnel greenhouse with a total ground area of 1500 m2 (250 m2 

each compartment). The establishments were located at the facilities of the University of 

Thessaly, Velestino, Volos (Latitude 39° 22′, longitude 22° 44′ and altitude 85 m), in the 

continental area of eastern Greece. 

The tomato plants (Solanum lycopersicumcv. Elpida) were cultivated in slabs filled 

with perlite slabs (ISOCON Perloflor Hydro 1, ISOCON S.A., Athens, Greece). The plants 

were fertigated with fresh nutrient solution with set-points of electrical conductivity (EC) 

around 2 dS m−1 and pH 5.8. The nutrient solution supplied to the crop was a standard 

nutrient solution for tomato grown in open hydroponic systems adapted to Mediterra-

nean climatic conditions. The nutrient solution was supplied via a drip system and was 

controlled by a time-program irrigation controller (8 irrigation events per day). 

In order to record the physiological response of the plants to their surrounding mi-

croclimate, tomato plants were imposed to different types of stress. Specifically, the plants 

were cultivated under (i) low air temperature around 15 °C (LTS treatment), (ii) low-water 

concentration in the root zone with dose 30 mL per plant (LWS treatment). Additionally, 

measurements of (iii) no stressed (NoS treatment) plants were also recorded. 

In order to build the data-base of crop physiology and environment microclimate 

under the mentioned extreme conditions, a multisensory tower was build consisted by by 

air temperature sensor (Thygro SDI-12, Symmetron, Greece) relative humidity (Thygro 

SDI-12, Symmetron, Greece), solar radiation (SP-SS, Apogee instruments, USA), leaf tem-

perature sensor (Thermocouples, type T), leaf wetness (PS-0061-AD, Netsense, Italia) and 

PRI sensor (type SRS-PRI, Meter group, USA). The multisensory was placed within the 

greenhouse in parallel with vertical axis of tomato main stem. The measurements started 

10 days after the day of each treatment was applied and lasted for 25 days. 

Totally, 9 features: air temperature (Ta, °C), relative humidity (RH, %), solar radiation 

(SR, W m−2), leaf temperature (TL, °C), leaf wetness in young leaves (Lwup, %), leaf wetness 

in mature leaves (Lwdn, %), photochemical reflectance index (PRI), photosynthesis rate (Ps, 

μmol m−2 s−1) and crop water stress index (CWSI) were added to the model in order to 

exist three outputs (LTS, LWS and NoS). 

In the current research, the CWSI developed by Jackson et al. [4] was calculated. The 

methodology followed in the current research is described in Baille et al. [5]. The calibra-

tion procedure of remote PRI sensor and how Ps is calculated was presented in Elvanidi 

& Katsoulas [6]. The resulted data-sample was of 10,763 values. 

In order to obtain high performance in greenhouse data, a series of ML algorithms 

like gradient boosting (GB), multilayer perceptron (MLP) and other artificial neural net-

work algorithms were examined. Among the algorithms, the GB technique corresponded 
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more sufficient in the studied tested sample where the measurable parameters were de-

fined as distinct and not as time-series. The GB modeling part of the ensemble learning 

algorithms that rely on a collective decision from inefficient prediction models is called 

decision trees. 

In the model, a list of hyperparameters were used (Learning rate, Number of estima-

tors, Max tree depth, Max features). The cross-validation process was repeated 50 times. 

The methodology was followed in the current research is described in Friedman et al. [7], 

Khan et al. [8] and Karamoutsou [9]. 

The dataset was divided in two parts, one for training-validation 80% (8610) and a 

second one for testing 20% (2152). All steps, learning and classification were written in 

Python. For machine learning, the Python ML Scikit-learn [10] library and the Spyder en-

vironment were used. 

The statistical criteria concern the Accuracy (1), Positive predictive values (PPV or 

Precision) (2), Sensitivity (or Recall) (3) and F1 (F1-score) (4) (where P is the number of 

real positive cases in data and N the number of real negative cases in data) were used: 

Accuracy = TP + TN / (P + N) (1) 

Precision = TP / (TP + FP) (2) 

Sensitivity = TP / (TP + FN) (3) 

F1 = 2 (Precision * Sensitivity) / (Precision + Sensitivity) (4) 

3. Results 

During the training procedure, it was defined the optimum rates of each hyperpa-

rameter. 

The range values of learning rate was 0–1, with the most common values being 0.001–

0.3. Smaller values made the model robust to the specific characteristics of each individual 

tree and reduced the possibility of overfitting. However, the low values increase the risk 

of not reaching the optimum with a fixed number of trees. For the development of the 

current GB-based classifier, the optimum value that have been chosen among the above 

learning values (0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1) was 0.5. 

The optimum number of estimators in which the total number of sequential trees was 

defined have been chosen among the values (10, 20, 30, 40, 50, 60, 70, 80, 90, 100) and was 

70. 

In the Max tree depth indicator in which the depth of the individual tress was con-

trolled, the optimum value has been chosen among the values (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 

and was 9. 

The optimum Max features indicator that defines the number of features that will be 

used for a best split was chosen among the values (1, 2, 3, 4, 5, 6, 7, 8) and was 7. 

The combination of the optimum hyperparameters developed the current GB algo-

rithm for detecting the three specific types of stress. According to the training process, the 

number of features that will be imposed to the model were defined to 9. 

Figure 1 shows in histograms the feature importance values obtained from GB ap-

proach. It is observed that out of the 9 features, two features improve the present models 

to classify the three types of stress, namely a) TL and b) Ta. The other characteristics com-

plement the forecasting process by further improving the model. Therefore, in the current 

algorithm, the more variables were performed as an input, the higher was the predictor 

accuracy. For decreasing the number of inputs there is a need to increase the testing sam-

ple since the greenhouse system is considered as a non-linear system, where the lack of 

datasets produces a very complex dynamic relation between the climatic factors and the 

crop physiology response difficult to predict. 

Table 1 presents the statistical criteria performed in GB algorithm during training 

and testing process. According to the data, the GB algorithm performed high criteria in 



Biol. Life Sci. Forum 2022, 2, x 4 of 6 
 

 

the training set where the Accuracy, Precision, Sensitivity and F1-score was 100%. GB be-

longs to the family of models that can handle even features with low predictive power. In 

addition, the GB model was found to have high performance in the test set with 98% Ac-

curacy, 98% Precision, 98% Sensitivity and 98% F1. Comparison of the metrics between 

the training and testing phase shows that overfitting was avoided. 

 

Figure 1. Feature importance of the measured factors in the set-up of GB algorithm. 

Table 1. Statistical criteria resulted from (a) the validation (training sample 8610) and (b) the perfor-

mance (testing sample 2152) of GB algorithm. 

 

Figure 2 shows the performance distribution for the GB model according to the three 

types of stress. More specifically, the GB model correctly “understood” all cases presented 

as LTS, it “confused” 16 NoS cases as LWS, 21 LWS cases as NoS, and only 1 LWS case as 

LTS. 

 

Figure 2. The predicted category of the samples of each treatment according to the type stress for 

GB algorithm in the testing process (testing sample 2152). 

GB Algorithm Accuracy Precision Recall F1

Trainning set 100% 100% 100% 100%

Testing set 98% 98% 98% 98%

Performance and Validation
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4. Discussion 

Gradient boosting algorithm is one of the most powerful algorithms in the field of 

machine learning. Gradient boosting algorithm can be used for predicting not only con-

tinuous target variable (as a Regressor) but also categorical target variable (as a Classifier). 

In the current research, quality and quantitative data are involved in the process of build-

ing ML model. Additionally, GB can build highly efficient, more accurate and high quality 

of ML model in a less time. GB performs well under small weak size of datasets and un-

balanced data like real time data management [11,12]. Ravi and Baranidharan [13] and 

Cai et al. [14] sustain that GB is faster from all over machine learning algorithms. 

In the current research, the GB algorithm was performed for the first time ever to 

classify qualitative and quantitative data under greenhouse conditions with very good 

statistical results. The developed model can be applicable in other greenhouse systems of 

Mediterranean region that cultivate tomato crop in hydroponics. 

The next step of the current research is to improve the model was developed by GB 

algorithm by decreasing the number of inputs in order to define more type of stress like 

the stress is occurred in the plants due to high air temperature and low nutrient perfor-

mance. 

5. Conclusions 

The current research presented the development of Gradient Boosting algorithm to 

predict three types of stress under greenhouse conditions. The model was made for to-

mato crop, while the training and the testing of the models was performed in a sample of 

10,763 datasets. In the model, 9 features inputs were adjusted for predicting 3 outputs. 

The developed GB model presented high statistical criteria more than 98% accuracy, per-

forming high sustainability in greenhouse data able to be connecting with the operation 

systems already used. Future perspective of the current research is to extend the model in 

order to predict more than three type of stress. Application of the current model in green-

house cultivation allows more efficient and precise farming with less human manpower 

with high quality production contributing to the further reduction of the resource’s inputs, 

energy and environmental footprint. 
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