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Abstract: Van der Waals (VdW) heterostructures built of atomically thin 2D material crystals exhibit 
unique optical and electronic properties. Here, we present a complete study of optical properties of 
novel 1D van der Waals heterostructures comprising carbon nanotubes (CNT) wrapped by atomi-
cally thin nanotubes of boron nitride (BN) and molybdenum disulfide (MoS2NT). The ellipsometry 
measurements allowed us to retrieve of dielectric functions and the excitonic properties of such a 
material. The extinction peaks appear at a slightly lower wavelength compared with the excitons in 
the absorption curve. This could provide the evidence of the coupling effect in hollow nanotubes. 
In addition, the charge carrier effect which is evident from XPS measurement results in the change 
of the THz conductivity spectra. The study of this work provides guidance for the design of 1D van 
der Waals heterostructures for use in nanoscale optoelectronic devices 
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1. Introduction 
Two-dimensional (2D) materials, as emerging ultrathin material families, exhibit di-

verse optical, electronic, such as flexible energy band design, strong Coulomb interac-
tions, efficient luminescence and spin-valley physics, that make them ideal candidates for 
optoelectronic device applications. Heterostructures build of atomically-thin 2D materials 
show unique properties associated with their interlayer coupling and charge transfer, 
opening up new possibilities for the development of nano optoelectronic devices [1].  

While the study of 2D heterostructures has already undergone rapid progress, the 
novel 1D heterostructures has been started to attract the attention. In particular, 1D van 
der Waals heterostructures has already showed unique properties associated with 

Citation: Burdanova, M.; Zheng, Y.; 

Paukov, M.; Toksumakov, A.;  

Ermolaev, G.; Tatmyshevskiy, M.; 

Komandin, G.; Ghazaryan, D.;  

Romanov, R.; Novikov, S.; et al. 

Broadband Optical and Terahertz 

Properties of Atomically Thin 1D 

van der Waals Heterostructures. 

2022, 2, x. 

https://doi.org/10.3390/xxxxx 

 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Biol. Life Sci. Forum 2022, 2, x 2 of 4 
 

 

intertube coupling effect, flexoelectricity in addition to unique optoelectronic properties. 
Here, we report, the optoelectronic properties of novel 1D van der Waals heterostructures.  

2. Sample preparation 
Single-walled CNTs were synthesized via the floating-catalyst aerosol CVD method, 

creating 20 nm-thick films. A mean diameter of 2.1 nm was determined from transmission 
electron microscopy (TEM) of a number of individual tubes, while tube lengths were 
above 10 μm. As-deposited films were used in order to avoid additional processing steps 
(such as sonication and surfactant wrapping) which can introduce additional defects, 
change the chemical and dielectric environment, and reduce the length of the as-grown 
CNTs. Hence, the films contained a mix of one-third of metallic and two-thirds of semi-
conducting SWCNTs with a mix of chiralities. Free-standing films were obtained by a dry-
transfer technique, and were used as a matrix for BN and MoS2 NT growth by CVD. The 
pristine CNT film was preheated at 1050 ℃ in Ar/H2 for 1 hour at low pressure and coated 
by BNNTs at 1050 ℃ (1-3 hr) at low pressure, and subsequently cooled slowly to room 
temperature. The MoS2 growth was performed at 550 ℃ at low pressure, and also cooled 
slowly to room temperature. As-grown the outer BNNT and MoS2 were evenly distributed 
in chirality.  

3. Results 
We obtained optical constants of C@BNNT and C@BN@MoS2NT films using spectro-

scopic ellipsometry (Figure 1 a and b). In addition, the transmittance, reflectance, and ab-
sorbance of our samples were also measured. In absorption experiments appeared exci-
tonic transitions are red-shifted with respect to the monolayer and bulk MoS2. The extinc-
tion peaks measured by ellipsometry appear at a slightly lower wavelength compared 
with the excitons in the absorption curve indicating a coupling effect in hollow nanotubes. 
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Figure 1. The refractive index (a) and extinction coefficient (b) of MoS2 Nanotubes and Monolayer. 

For the C@BN@MoS2 NT film the in-plane and out-of-plane modes revealed by Ra-
man spectroscopy, are in agreement with theoretical predictions for MoS2 NTs and differ-
ent to monolayer and bulk flakes (Figure 2 a). The observed rise in a real part of the THz 
conductivity towards lower frequency for the C@BN NT film is consistent with previous 
studies of CNT films with a similar morphology, where the THz conductivity contains a 
contribution from Drude-like free-carrier absorption and from axial plasmons.  
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Figure 2. Raman (a) and THz (b) spectrum of 1D van der Waals heterostructures. 

MoS2 NT creates a small increase in conductivity of C@BN@MoS2 NT across the THz 
range in comparison to the C@BN NTs (Figure 2 b). This extra conductivity may be origi-
nated by free charges in the outer MoS2 NT if the as-grown material is doped. Alterna-
tively, the MoS2 NTs may have altered the conductivity of the encapsulated CNTs, either 
as a result of a strain-induced change in their band structure or by a small but finite charge 
transfer from the outer MoS2 NTs to the inner CNTs. In addition, the shift of plasmonic 
peak may be originated by shortening of the conductivity pathways of CNTs.  

The observed change in the THz conductivity has a correlation with XPS measure-
ments [2]. The binding energy shifts in XPS spectra for core level electrons have been used 
previously to identify the charge transfer processes between different nanotubes in a het-
erostructure. The binding energy shifts can be associated with Fermi level shifts and indi-
cates the doping as the result of charge transfer.  

Finally, we used an infrared pump, visible probe spectroscopy to selectively create 
excitons in the carbon nanotubes, while probing the response of the A and B excitons in 
the MoS2 nanotubes [2,3]. As a result, we observe a rapid and strong excitonic response of 
the MoS2 NT under this below gap experiment. Optical pump-THz probe spectroscopy 
allows the presence of free, unbound charges in a heterostructure to be uniquely estab-
lished. 

4. Conclusions 
The structure of radial 1D van der Waals heterostructures consisting of carbon nano-

tubes wrapped by BN and MoS2 nanotubes was examined by numerous techniques such 
as absorption, transmission, reflection, ellipsometry, Raman spectroscopy, XPS, and ultra-
fast THz and optical pump-probe spectroscopy. This complex improved understanding 
of the opto-electronic properties is important in the drive towards nanoelectronics 1D van 
der Waals heterostructures. 
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