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1. Introduction 15 
The demolition of old flexible pavements layers generates large quantities of re- 16 

claimed asphalt pavement (RAP). This material can be milled and reused for new pave- 17 
ment sections as aggregates. Alkali-activated materials (AAM) are alternative cementi- 18 
tious binders with high strength and chemical resistance [1]. The main problem associated 19 
with RAP in cementitious materials is the strength loss due to the porous interface [2–5]. 20 
The use of metakaolin (MK) can improve slag based AAM's properties [6,7]. The objective 21 
of this study is to investigate if the properties of RAP-AAM produced with low alkali 22 
concentration (4% Na2O and Ms = 0 and 1) can be improved with 5% MK replacement. 23 
This investigation compared isothermal calorimetry, compressive and flexural strength 24 
results for RAP-AAM produced with and without MK replacement.   25 

2. Materials  26 
The RAP-AAM was produced mixing a powdered precursor with an alkali solution. 27 

The precursors used were ground granulated blast furnace slag (GGBFS) supplied by Eco- 28 
cem and MK (Caltra). The alkali solution was prepared using sodium hydroxide sodium 29 
silicate solution form VWR. Fine RAP aggregate was obtained by removing the fine frac- 30 
tion (< 4mm) of a locally milled flexible pavement supplied by Willemen Infra Recycling. 31 
Table 1 shows the compositions studied.  32 

Mortar mixing details and experimental procedures can be found elsewhere [5]. 33 

Table 1. Compositions (Ms = silica modulus, w = water, p = precursor, a = fine RAP aggregate) 34 

 Precursor Alkali-solution a/p 
GGBFS MK Na2O Ms w/p 

R4-0 100.0g 0g 4% 0 0.5 1.5 
5MK4-0 95.0g 4.5g 4% 0 0.5 1.5 

R4-1 100.0g 0g 4% 1 0.5 1.5 
5MK4-1 95.0g 4.5g 4% 1 0.5 1.5 

3. Results and discussion 35 
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Figure 1 presents the calorimetry results for the different RAP-AAM samples stud- 1 
ied. The sharp peak at the start of the experiment was only partially captured. The second 2 
and main peak is related to the precipitation of the reaction products [8,9]. Samples with 3 
sodium silicate (R4-1 and 5MK4-1) have a delayed second peak due to the workability 4 
retention and the reduced availability of OH- [10,11]. Replacing 5% of GGBFS with MK 5 
decreased the intensity and delayed the second peak. It also reduced the cumulative heat 6 
of the samples. The retarding effect of MK in the formation of reaction products was also 7 
observed in another research [12].  8 

 9 
Figure 1. Calorimetry results of RAP-AAM 10 

The compressive and flexural strength of the samples is presented in Figure 2. The 11 
use of MK reduced the early strength of the samples (both compressive and flexural). At 12 
later ages, however, the use of MK caused some slight improvements in strength. This 13 
result differs from other studies [7,13] that reported a reduction in compressive strength 14 
and gains in flexural strength for sodium hydroxide alkali-activated pastes and mortars.  15 

  16 
Figure 2. Compressive and flexural strength results for RAP-AAM. 17 

4. Conclusion 18 
The use of MK delayed the formation of main reaction products, which significantly 19 

impacted the early strength of the studied mixes. The filler effect of MK may have helped 20 
anchor RAP particles to the matrix and caused slight improvements in compressive 21 
strength observed at 28 days. This study did not see significant improvement in flexural 22 
strength as observed elsewhere [7], most likely due to the low alkali concentration used. 23 
Further studies of the benefit of MK for RAP-AAM at higher concentration of alkalis is 24 
needed.  25 
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