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Abstract: To control a bioprocess, the determination of the current state is necessary. Most state 

variables require substantial effort and time to measure or sometimes are not measurable at all, a 

direct measurement is not always an option. Instead, an indirect chemometric approach based on 

some other easier to measure variable such as spectroscopy is commonly used to estimate the state 

of a bioprocess. In this contribution we present another much cheaper solution for S. cerevisiae cul-

tivations where the only direct measurement were ethanol measurements in the headspace of the 

bioreactor based on metal oxide gas sensors. For the current state prediction, a process model and 

an unscented Kalman filter as observer was used. The basic idea is to apply the model to predict the 

process state, and then use the ethanol measurements to correct and change the model prediction 

online. The main advantage of this approach is, that metal oxide gas sensors are dead cheap and in 

contrast to spectroscopic approaches, no expensive calibration is required. The knowledge required 

is the process model and a rough estimation of the kinetic parameter values. 

1. Introduction 

The ability to monitor major process state variables, such as biomass, substrate and 

product concentrations accurately is essential for automatic control of bioprocesses. How-

ever, due to the unavailability of inexpensive or dependable measuring systems, rapid on-

line measurements of said state variables are often not feasible. So, the development of 

chemometric software sensors that are capable of achieving rapid and accurate estimation 

of said process states, is of great interest [1-3].  

One example for such software sensors that received a lot of interest lately, are Kal-

man filters and their non-linear extensions. They can be used for continuous and accurate 

estimation of the state of bioprocesses. In general, the Kalman filters combine available 

general knowledge in the shape of a process model and the already available process in-

formation such as on-line measurements to an estimation of the true state of the process. 

Various nonlinear extensions for the Kalman filter are available. They mostly differ in the 

way how the approximation of the prediction uncertainty is performed. Lisci and Tronci 

[4] appkied an extended Kalman filter (EKF) to predict the state of a fed-batch cultivation 

of baker’s yeast. The variables of interest were temperature, dissolved oxygen amount 

and the substrate concentration. Another EKF implementation presented by Popova et al. 

[5] showed the estimation of product, substrate and biomass concentrations based on the 

measurements of glucose and ethanol during a S. cerevisiae batch cultivation. A nonlinear 

extension to the Kalman filter is the so called unscented Kalman filter (UKF) in which the 

uncertainty or covariance of the predicted state is approximated by using the unscented 

transform [6].  

In recent years, several authors demonstrated the application of the UKF for the on-

line estimation of state variables and parameters in various processes. For example, Jianlin 

et al. [7] demonstrated an approach based on a UKF for the prediction of biomass and 

substrate in a fed-batch cultivation of S. cerevisiae based on the measurements of dissolved 
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oxygen and carbon dioxide. Krämer and King [8] used a Kalman filter in conjunction with  

the cultivation of S. cerevisiae for noise removal from their measured state variables. The 

measurements themselves were based on near infra-red spectra taken from the fed-batch 

cultivations.  

In this publication the application of an unscented Kalman filter in S. cerevisiae batch 

cultivations is shown for estimation of biomass, glucose and ethanol concentration. Also, 

the kinetic parameters or growth rates are estimated on-line. The only measurements re-

quired are infrequent ethanol measurements in the gas phase. To assess the reliability the 

suggested method, it was tested on three S. cerevisiae batch cultivations that differed 

slightly in the initial substrate concentrations. 

2. Material and Methods 

2.1. Yeast cultivation & offline measurements 

In total three cultivations of S. cerevisiae, C1, C2, and C3, were carried out. In all three 

batch cultivations, 100 mL Schatzmann medium [9] was inoculated with 5 g of yeast. The 

batches were then, after 10 min of shaking, put into a stirred tank reactor (Minifors, Inifors 

HT, Bottmingen, Switzerland). The glucose concentration in the media used for the batch 

cultivations was 2.85, 5 and 9 g/L for C1, C2, and C3 respectively. Also 1 mL/L trace ele-

ments solution was added. All cultivations were performed at a temperature of 30 °C and 

a controlled pH at 5. The aeration and agitation rates were also kept at 3.5 L/min and 450 

rpm, respectively.  

2.2. Ethanol gas sensors 

 

Figure 1. Gas sensor with sampling system and sensor array consisting of three sensors (TGS822, 

TGS813, MQ3) and an example raw output over a single measurement cycle. 

As shown in Error! Reference source not found. the airtight measurement chamber 

with a volume of ~250 mL contained an array of three different commercially available 

and reasonably cheap tin oxide gas sensors (MQ3, TGS 813 and TGS 822). During a meas-

urement a gas pump (Schwarzer Precision, Essen, Germany) is pumping a continuous 

sample gas stream with 400 mL/min into and through the measurement chamber for 10 s. 

Then the sensors need to be regenerated with oxygen. This is done by flushing the meas-

urement chamber with either pure oxygen or compressed air for 90 or 120 s respectively. 

Then the chamber is sealed by closing all valves. Proper mixing inside the chamber is 

achieved by a 40 mm fan, running at 4000 rpm.  After 3 minutes, the regeneration is fin-

ished. One measurement cycle therefore takes about 5 minutes and during the entire cycle 
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the output of the three gas sensors is captured by a 10-bit ADC and send to a computer 

for processing. The three 5 minutes long data streams from the three MOS sensors are then 

evaluated by a Matlab program and through a PLSR model the ethanol concentration in 

the sample gas stream can then be determined once every 5 minutes. For calibration of 

said PLSR model, cultivation C1 was used.  

2.3. Dynamic process model 

When applying a Kalman filter, a process model is required. To do this, the cell 

growth kinetic is estimated by two Monod terms. The first (main) substrate is glucose and 

then, after glucose is consumed, ethanol becomes the secondary substrate and therefore 

growth-limiting factor. The process itself is modelled as a batch process in an ideal stirred 

tank reactor: 

d𝑋

d𝑡
 =  𝜇𝐺𝑋 +  𝜇𝐸𝑋 𝜇𝐺 =  

𝜇𝑚𝑎𝑥,𝐺  ·  G
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d𝜇𝑚𝑎𝑥,𝐺  
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 =  0  
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 =  0  

Here X, G and E represent the main state variables, namely biomass, glucose and 

ethanol concentration, respectively. YX/G, YE/G and YX/E are the three conversion factors 

(yields) that describe the conversion ratio from glucose to biomass, glucose to ethanol and 

ethanol to biomass. μG and μE stand for the actual specific cell growth rates on glucose 

and ethanol. They are computed from the maximum specific growth rates 𝜇𝑚𝑎𝑥,𝐺  and 

𝜇𝑚𝑎𝑥,𝐸  based on Monod kinetics. The values for 𝜇𝑚𝑎𝑥,𝐺 and 𝜇𝑚𝑎𝑥,𝐸  are treated as state 

variables as well so that they are estimated with the Kalman filtering. 

2.4. State Estimation 

Here an unscented Kalman filter (UKF) was implemented to continuously estimate 

biomass, glucose and ethanol concentrations. Also, the two main kinetic parameters, the 

maximum growth rates were continuously estimated and corrected. Like all Kalman filter 

variants, the UKF estimates the most likely state of a system by weighing a simulated 

process state, obtained from the process model, and actual measurements. The weights 

are chosen based on measurement error and model uncertainty. A more detailed expla-

nation of the Kalman implementation used here can be found at [10].  

2.5. Offline measurements 

For determination of the concentrations of biomass, ethanol and glucose, samples 

from the bioreactor were taken regularly. Cell dry mass was determined by centrifugation 

of 1.5 mL of sample at 14,000 rpm for 10 min at 4 °C. The wet cells were placed in a drying 

cabinet for 24 h at 103 °C. After cooldown for 30 min, the dry mass was weighted. The 

remaining supernatant was analyzed by HPLC to measure the glucose and ethanol con-

centrations. For evaluation of the UKF algorithm, the root-mean square error (RMSE) was 

calculated from the UKF estimated concentrations and the off-line measured concentra-

tions. Also, from the RMSE, the percentage standard errors (SE) were calculated with re-

spect to the highest concentrations: 

𝑅𝑀𝑆𝐸 =  √∑  
(�̂�𝑖− 𝑌𝑖)2

N

𝑁

𝑖=1
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(�̂�𝑖− 𝑌𝑖)
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�̂�i stands for the estimated concentration by the UKF method, Yi stands for the off-

line concentration determined by HPLC analysis, N represents the number of measure-

ments and 𝑌𝑚𝑎𝑥 represents the highest concentration in the corresponding off-line value. 

3. Results and Discussion 

 

Figure 2. Ethanol measurement and Kalman state estimation for all three cultivations. The offline 

values have not been used and are only shown for reference. 

In figure 2 the UKF estimated concentrations of biomass, glucose and ethanol (solid 

lines) in the bioreactor are shown. The gas sensor on-line measured ethanol concentrations 

(hollow red circles) and the HPLC off-line ethanol and glucose as well as biomass concen-

trations (solid forms) are presented as well. These off-line are only shown as a reference 

to demonstrate that the estimated values are in fact accurate. 

When a difference in the on-line measured and simulated values is detected, the val-

ues estimated by the Kalman filter are corrected to be more inline with the measured ones. 

In cultivation C2, from 2 to 3 h time, there is a deviation between the reported gas sensor 

value and the off-line reference values. The reason for this could be various factors like 

fluctuations in temperature or electrical noise influencing the sensor electronics.  

The accuracy the Kalman Filter regarding the estimation of state variables was eval-

uated by calculating the RMSEP and SEP between the estimated ethanol, biomass and 

glucose concentration and the measured offline concentrations, and the results are pre-

sented in Table 1: 

Table 1. RMSEP and SEP of off-line measured values and their estimated concentrations by the UKF 

algorithm. 

 

Experiment 

Ethanol Biomass Glucose 

RMSEP [g/L] SEP [%] RMSEP [g/L] SEP [%] RMSEP [g/L] SEP [%] 

C1 0.15 4 0.29 9  0.13 1.7 

C2 0.08 4.5 0.09 5 0.16 4 

C3 0.09 4.5 0.1 5 0.16 4 

The standard error of estimated ethanol concentration is below 5 % for all three cul-

tivations which is a reasonable result. The error in cultivation C1 is slightly smaller as this 

cultivation was used to calibrate the chemometric model that was used to feed the UKF. 

It was also possible to estimate the concentrations of biomass and glucose as well, alt-

hough they were not measured at all. However, the biomass estimation showed quite a 

large error of almost 10 % in case of C1. 

C1 C2 C3 
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Figure 3 shows the estimated maximum specific growth rates with respect to the con-

sumption of glucose 𝜇max,G and ethanol 𝜇max,E and the specific growth rates itself (𝜇G and 

𝜇E).  

 

Figure 3. maximal specific growth rates 𝜇max,G and 𝜇max,E (solid lines) as well as the actual growth 

rates 𝜇G and 𝜇E (dashed lines) as they are estimated by the Kalman Filter algorithm. 

As it can be seen in Figure 3, different starting values for 𝜇max values were chosen for 

each cultivation. These initial values are based on experience with previous cultivations 

(μmax,G ≈ 0.2 ℎ−1, μmax,E ≈ 0.05 ℎ−1) and then varied slighty and randomly to see whether 

the UKF algorithm is capable to correct these values. In C1 the 𝜇max,G   is increasing shortly 

after the inoculation starts, this indicates that the chosen starting value was lower than the 

actual value, therefore the UKF algorithm converges to the true value. When the glucose 

is almost depleted, the metabolic change from glucose to ethanol consumption takes place, 

therefore 𝜇max,E  would start to increase. However, shortly before glucose is completely 

depleted, 𝜇max,G  increases which results in the decrease of 𝜇E, therefore the UKF increases 

the 𝜇max,E  to compensate for the underestimation. In C2, the specific glucose based growth 

rate is decreasing slightly. Therefore, it can be assumed, that the selected starting values 

for the kinetic parameters are close to their actual values. Similarly, in C3, the specific 

glucose based growth rate is increasing slightly after the inoculation and then decreasing 

again. This points to the fact, that the selected starting values for the kinetic parameter is 

lower than its actual value but the initial guess was close. Nonetheless, with the used UKF 

algorithm the values converge to reasonable values quickly.  

4. Conclusion 

Here, a dynamic non-linear process model was used in combination with an un-

scented Kalman filter algorithm for the estimation of kinetic parameter and biomass, glu-

cose and ethanol concentrations of a batch fermentation of S. cerevisiae. The algorithm only 

required on-line data in form of infrequent ethanol measurements from a MOS gas sensor 

to achieve this.  

Three S. cerevisiae fermentations with slightly differing initial substrate/glucose con-

centrations were performed to analyze the behavior and capability of the proposed algo-

rithm. The result indicated that the presented UKF based algorithm was capable of esti-

mating and correcting the specific growth rates on-line. It was also possible to estimate 

the concentrations of biomass, glucose and ethanol continuously on-line with good accu-

racy while only actually measuring the ethanol concentration in the headspace with a 

cheap gas sensor array. The proposed method and algorithm can therefore be used in 

combination with low-cost gas sensors for monitoring of batch fermentation processes of 

baker’s yeast. 
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