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Abstract: This work aims to underline the sampling frequency impact of the SCADA data on the 

wind turbine blades damage estimation. Previous studies emphasize on the needs of a 1 Hz fre-

quency signal to carry out wind turbine blades damage computation based on physical models 

without proving this assumption. But the fatigue calculation based on physical models over the 

whole lifetime of the wind turbine requires a large memory capacity regarding to the lifespan of 

the wind turbines as well as strong calculation resources, restricting the application of this method 

in the current wind farms. The present study investigates on the impact of the wind speed sam-

pling frequency on the blades damage estimation of a 5 MW wind turbine numeric model from 

the NREL library submitted to real wind turbine wind speed history, to determine what is the er-

ror involved working with 10 min SCADA data compared to 5 s one. 

Keywords: wind turbine; damage estimation; Rainflow counting; composite materials; predictive 

maintenance. 

 

1. Introduction 

The wind energy part in the overall electricity production is expected to rise from 

5% today to 45% in 2050 to support an always growing need of energy in the context of 

fossil deposits exhaustion and global warming [1]. In order to achieve this production 

growth, the levelized cost of energy (LCOE) is one of the key drivers. One of the main 

elements in the reduction of the LCOE is around operation and maintenance (O&M) 

optimization. It is expected that 30% of the WT energy production cost decrease from 

2020 to 2050 relies on the operation and maintenance cost reduction [1]. Wind turbine 

blades (WTB) are a key component of a wind turbine (WT) and their repair or replace-

ment cost is very high, because they involve rope-access  

Currently, the research efforts focus on the predictive maintenance of the WTB to 

minimize their associated O&M costs or evaluate the possibility of WT life extension. 

The predictive maintenance relies on smart and suitable acts planification to avoid ex-

pensive corrective action costs as well as to avoid expensive repair operation costs 

linked to reactive maintenance. One of the most promising predictive maintenances 

relies on physical models [2]. Those models are known to provide accurate estimation of 

the damage behavior. But the associated computations are time consuming when con-

sidering the complete lifetime of a WT, limiting the period study regarding the neces-

sary use of 1 Hz wind speed signal to assess the actual WTB fatigue [3]. The industry 

standard is to work with 10 min aggregated signals (average, min, max, standard devia-
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tion) as recommended by the IEC standard 61400-12-1 [4]. The 10 min period has been 

proved to insure to keep the energetic content of the wind [4]. However, as mentioned 

above, the evaluation of WT fatigue requires data of higher frequency, which are not al-

ways archived in the SCADA systems. Figure 1 presents the difference in terms of data 

volume between different aggregations intervals. 

 

Figure 1. Schema showing the relation between data weight and the measuring period for a wind 

farm composed 72 WT for 3 years. 

2. Resources and Methods 

2.1. Resources 

To carry out this study, we had access to 5 s measured wind speed signal from a 

wind farm composed of several 2 MW WT providing high frequency wind speed signal 

and then by resampling it, average mean wind speed for different period of time like 

classical 10 min SCADA data can be obtained (see Figure 2). 

 

Figure 2. Wind speed signal with different sampling rate 

Then, MATLAB programming language and FAST aeroelastic model have been uti-

lized to estimate the aerodynamic loads leading to stress variations and hence the dam-

age due to the wind speed fluctuations. However, to estimate the inner stress in the 

WTB, a detailed numeric model of the WTB must be used. Because the blueprints of 

those 2 MW WT are not available, a 5 MW WT numeric model in open access in the 

NREL library will be used as reference. To do this, it is assumed that both WT must obey 

to the same regulation contained in [5] in terms of life expectancy. So, it is expected that 

despite their output power capacity difference, they should have the same fatigue dam-

age behavior. 

2.2. Considered environmental effects 
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WTB fatigue are caused by different environmental factors like rain erosion [6], the 

gravity effect [7], the variation temperature can also affect the material fatigue strength 

[8]. But, according to the scientific literature, the main factor influencing on the WTB fa-

tigue damage is the wind [9]. For reasons of simplicity, we will focus only on this aspect 

in the rest of this paper. 

2.3. Standard Method 

The standard methodology to evaluate the damage level of wind turbine blades is 

proposed by the International Standard IEC 61400-1 [5]. It relies on physical damage 

model based on the Palmgren-Miner linear damage accumulation rule and the Rainflow 

Counting algorithm (RFC). 

The mean stress exerted on the WTB |𝜎| estimated using the wind speed time series 

from the SCADA, the simulation tool FAST using the AeroDyn module and the 5 MW 

WT geometry from the NREL library and the extremum design load of the material 𝜎𝑢, 

the RFC algorithm enable to estimate: 

[𝛥𝜎𝑖 , 𝑛𝑖] = RFC(𝑢(𝑡), |𝜎|, 𝜎𝑢) (1) 

Here, 𝛥𝜎𝑖  is the stress range amplitude of the cycles, 𝑛𝑖 corresponds to the number 

of cycles according to the cycle amplitude 𝛥𝜎𝑖 and RFC represents the Rainflow counting 

method function as defined in Matlab [10] in our situation. 

Then, using the Palmgren-Miner rule, it is possible to have an estimation of the 

damage evolution 𝐷 ∈ [0,1] in the WTB: 

𝐷 =∑
𝑛𝑖
𝑁𝑖

𝑖

 (2) 

With 𝑁𝑖  the maximum number of cycles before rupture of the material for the 

equivalent stress amplitude 𝛥𝜎𝑖: 

𝑁𝑖 = (
𝜎𝑢 − |𝜎|

0.5𝛾𝛥𝜎𝑖
)

𝑚

 (3) 

Here 𝑚 is the slope of the S-N curve for the corresponding material and 𝛾 is a safety 

coefficient [11]. 

Next, the damage evolution is expressed as a function of cycles. Therefore, it is nec-

essary to convert the damage into a time-dependent value. The standard method is 

summarized in Figure 3. 

 

Figure 3. Standard methodology for fatigue estimation 
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2.4. Stress and damage estimation: 

The blade root is a hot spot of the blade [12], and the flapwise bending is expected 

to be the main source of damage in normal working condition [13]. Hence, we will focus 

on the damage caused by the flapwise bending at the root of the blade 

Using FAST software and a 5 MW WT model from the NREL library, it has been 

possible to estimate the flapwise bending moment at the blade root according to the 

wind speed (Figure 4a). 

After which, knowing the flapwise bending moment and the geometry of the WTB 

it is possible to estimate the stress at the blade root thanks to the following equation [14]: 

𝜎𝑓𝑙𝑎𝑝 =
𝑀𝑓𝑙𝑎𝑝𝑐

𝐼
 (4) 

With 𝜎𝑓𝑙𝑎𝑝  the stress linked to the flapwise bending, 𝑀𝑓𝑙𝑎𝑝  the flapwise bending 

moment, 𝑐 the half of the airfoil thickness at the root and 𝐼 the moment of inertia of the 

WTB root section. The next step is to carry out a RFC of the stress amplitude to estimate 

the fatigue damage as described in Section 2.2 (see Figure 4b). 

  

(a) (b) 

Figure 4. (a) Estimated blade flapwise bending according to the wind speed for a 5 MW WT; (b) 

Stress amplitude CDF obtained from 10 min SCADA data 

Then, using the previous stress amplitude RFC, the WTB damage evolution has 

been estimated through the equation (2) (see Figure 5). 

 

Figure 5. Evolution of the WTB damage from 10 min mean wind speed SCADA data 
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3. Results and discussion 

First, the CDF of the stress amplitude has been calculated for different wind speed 

sampling intervals or frequency: 5 s samples, 10 s mean; 30 s mean, 1 min mean and 

10 min mean wind speed on the same wind turbines for the summer and winter seasons 

of 2021 (Figure 6). This allows a better understanding of the signal properties for differ-

ent sampling periods compared to the one with 5 s direct measure taken as reference. 

Summer and winter have been chosen because they generally possess the wide differ-

ences in terms of mean wind speed. According to [15] in winter the mean wind speed 

seems to be higher than in summer nevertheless with approximately the same turbu-

lence intensity. So, it is expected to obtain wider extrema wind speed amplitude and 

hence stress amplitude in winter than in summer in this study. 

 

 

(a) (b) 

Figure 6. (a) Estimated stress amplitude CDF for different measuring period in summer; (b) Esti-

mated stress amplitude CDF for different measuring period in winter. 

It is worth noting that in summer 2021, the maximum stress amplitude observed for 

the different sampling frequency are close to each other even if the corresponding cycle 

amount decreases as the sampling period rise. While in winter, the observed maximum 

stress amplitude rises with the sampling frequency. Then, concerning the total number 

of cycles, it is approximately proportional to the sampling frequency in both cases. Con-

cerning the damage estimation, the one obtained via 10 min mean wind speed SCADA 

data is widely underestimated compared with the 5 s sampled wind speed signal 

(Figure 7). 

  

(a) (b) 

Figure 7. (a) Blade root damage estimation for different measuring period in summer; (b) Blade 

root damage estimation for different measuring period in winter. 

Those observations suggest that valuable information concerning the stress history 

could be lost with 10 min mean wind speed SCADA data compared to the 5 s wind 
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speed signal, in terms of stress amplitude as well as the total number of cycles, leading 

finally to a wide underestimation of the damage evolution. The results are summarized 

in Table 1 and Table 2. 

Table 1. Results for summer 2021 

Sampling period 
Relative maxi-

mum stress 

Relative total 

number of cycles 
Relative blade 

root damage 

Relative compu-

ting time 

5 s 1 1 1 1 

10 s 9.17 × 10−1 5.55 × 10−1 5.57 × 10−1 4.03 × 10−3 

30 s 7.92 × 10−1 2.08 × 10−1 2.06 × 10−1 1.23 × 10−3 

1 min 7.92 × 10−1 1.04 × 10−1 1.03 × 10−1 6.76 × 10−4 

10 min 7.92 × 10−1 9.44 × 10−3 9.62 × 10−3 8.30 × 10−5 

Table 2. Results for winter 2021 

Sampling period 
Relative maxi-

mum stress 

Relative total 

number of cycles 

Relative blade 

root damage 

Relative compu-

ting time 

5 s 1 1 1 1 

10 s 9.11 × 10−1 5.02 × 10−1 5.05 × 10−1 3.13 × 10−3 

30 s 6.47 × 10−1 1.83 × 10−1 1.83 × 10−1 1.01 × 10−3 

1 min 6.18 × 10−1 9.45 × 10−2 9.31 × 10−2 5.24 × 10−4 

10 min 5.59 × 10−1 7.86 × 10−3 8.14 × 10−3 1.34 × 10−4 

According to the results summarized in Table 1 and Table 2, it appears that apart 

from the damage accuracy issue, using 10 min SCADA signal seems to be a time-saving 

way for damage estimation, reducing the computing time to a fraction of the one ob-

tained with 5 s data. Moreover, 10 min SCADA data are the most common time frame in 

the wind turbine industry. These points arise the interest for a method allowing to esti-

mate the wind turbine blade damage evolution with 10 min SCADA combining the as-

sociated timeliness with the accuracy of a higher frequency one. This topic might be the 

subject of a future study. 

4. Conclusion 

The current work showed the wind speed sampling period impact on the resulting 

stress history of a given wind turbine. In fact, as the sampling period increases, the ex-

treme stress amplitudes diminish (peak shaving) along with the total number of stress 

cycle, in a proportional way for the last one. As result, the damage estimation according 

to the common 10 min SCADA is widely underestimated compared to that one obtained 

from 5 s wind speed data. Hence, direct estimation of the damage evolution from 10 min 

SCADA data cannot perform well in terms of accuracy. In future work, it would be in-

teresting to check if some interesting results could be extracted from 10 min SCADA da-

ta despite their deficiencies like the classification of the most damaged WT in order to 

prioritize the maintenance efforts on the most sensitive WT within a wind farm. Then, 

proposing a method allowing estimating the equivalent 1 s wind speed WTB damage (as 

recommended by the scientific community) from common 10 min SCADA data would 

be an interesting contribution to the WT predictive maintenance domain and also for the 

evaluation of lifetime extensions. 
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