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Abstract: In recent years, dynamic process models have grown even more important in the context 

of Industry 4.0 and the use of digital twins. However, the accuracy of corresponding model param-

eter estimates is determined by the quantity and quality of data and the parameter identification 

solving methodologies used. Standard methods are based on the ordinary least squares framework. 

Still, other options are available that might be more sensitive to model parameter variations and 

ensure more precise parameter estimates. The paper presents a novel technique for parameter iden-

tification based on incorporating neural ordinary differential equations for surrogate modeling and 

differential flatness, i.e., a systems theory concept in control engineering. This approach may lead 

to improved parameter sensitivities, as demonstrated with a simulation study of a distributer-pa-

rameter identification problem assuming a diffusion-type parabolic partial differential equation. 

Keywords: Process Systems Engineering; System Identification; Systems Theory; Differential Flat-

ness; Deep Learning; Partial Differential Equations; Parameter Sensitivities 

 

1. Introduction 

System identification is the process of creating a mathematical model, or equation, to 

represent a real-world problem. This equation can then be used to predict and analyze 

possible outcomes of the system under study. In many engineering fields, the time behav-

ior of complicated technical systems can be described by using a system of ordinary dif-

ferential equations (ODEs). However, the parameters in these equations are often un-

known and need to be estimated from experimental data. Over the past few decades, there 

has been much research into parameter estimation methods. A popular method mini-

mizes the sum of squared errors (SSE) between a model prediction and measurement 

data, where the prediction is calculated by solving the ODE numerically [1]. The model 

parameters are then adjusted until a given minimization criterion is reached. However, 

other options are available that might be more sensitive to model parameter variations 

and might ensure more precise parameter estimates, respectively. Control and systems 

theory can improve parameter identification procedures, e.g., online parameter identifi-

cation concepts [2,3]. 

Another example is differential flatness to recalculate control trajectory profiles for 

desired system dynamics [4,5], i.e., following a system inversion concept. In a differential 

flat system, state variables and input variables can be expressed as functions of so-called 

flat outputs and a finite number of their derivatives, also leading to a simplification of the 

parameter identification problem. Moreover, while optimal experimental design concepts 
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might be needed to improve data quantity and quality [3], the flatness concepts involved 

in the flat output approach may result in improved parameter sensitivities [6] and more 

precise parameter estimates [7,8] without experimental data enrichment. 

2. Methods 

2.1. Parameter identification problem 

Frequently, dynamic process models are given as ordinary differential equation sys-

tems:  

�̇�(𝒕) = 𝐟(𝐱(𝒕), 𝐮(𝒕), 𝐩),

𝐱(𝒕𝟎) = 𝐱𝟎,
       (1) 

where 𝐭 ∈ [𝐭𝟎, 𝐭𝟎 + 𝐭𝐞𝐧𝐝] is the time, with 𝐭𝟎 as the initial time and 𝐭𝐞𝐧𝐝 as the time 

duration of the simulation, 𝐮 ∈ 𝐑𝐧𝐮 is the vector of the control variables, 𝐩 ∈ 𝐑𝐧𝐩 is the 

vector of the time-invariant parameters, and 𝐱 ∈ 𝐑
𝐧𝐱 are the differential system states. 

The initial conditions for the differential states are given by 𝐱𝟎. Moreover, 𝐟: 𝐑𝐧𝐱×𝐧𝐮×𝐧𝐩 →

𝐑𝐧𝐱 represents the corresponding vector field. For this kind of mathematical representa-

tion, the standard approach of parameter identification, i.e., the ordinary least squares 

(OLS) method, can be defined as: 

𝐩𝐎𝐋𝐒 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝐩
 ∑  𝑲
𝒌=𝟏 ∥∥𝐲

data (𝒕𝒌) − 𝐲(𝒕𝒌, 𝐩)∥∥𝟐 
𝟐

,   (2) 

where || ⋅ ||𝟐 denotes the Euclidean norm, 𝐲data (𝒕𝒌) represents the data vector at 

discrete time points 𝒕𝒌 over all measurement samples 𝑲, and the model output function 

is defined as: 

𝐲(𝐭𝐤, 𝐩) = 𝐡(𝐱(𝐭𝐤, 𝐩)),       (3) 

with 𝐡: 𝐑𝐧𝐱 → 𝐑𝐧𝐲 , and 𝐲 ∈ 𝐑𝐧𝐲  as the model output vector. Alternatively, when 

aiming to utilize the inverse model response, i.e., applying a model inversion strategy, an 

input least squares (ILS) based parameter identification problem can be used:  

𝐩ILS = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝐩
 ∑  𝑲
𝒌=𝟏 ∥∥𝐮

data (𝒕𝒌) − 𝐮(𝒕𝒌, 𝐩)∥∥𝟐
𝟐
.   (4) 

Here, the control inputs, 𝐮(𝐭𝐤, 𝐩), have to be calculated to solve the parameter iden-

tification problem, and 𝐮data (𝒕𝒌) represents the recorded physical input actions. For this 

purpose, in this work, we study the differential flatness concept as outlined in Section 2.2. 

However, it is essential to note that parameter sensitivities are relevant for well-posed 

parameter identification problems. On having the output function 𝐲(𝒕𝒌, 𝐩) and the inputs 

𝐮(𝒕𝒌, 𝐩) (inverse model response), the sensitivity 𝑺 of the parameter 𝒑 is defined as: 

𝑺𝒚𝐩(𝒕𝒌) =  
𝝏𝐲(𝒕𝒌,𝐩)

𝝏𝐩
      (5) 

𝑺𝒖𝐩(𝒕𝒌) =  
𝝏𝐮(𝒕𝒌,𝐩)

𝝏𝐩
      (6) 

And here, in general, absolute high parameter sensitivity values ensure precise pa-

rameter estimates according to the Fisher Information matrix and the Cramér Rao ine-

quality [1,3].  

2.2. Differential flatness 

In literature, a process model (Eq. (1)) is called differentially flat if there exists an 

output function: 

𝐲flat = 𝐡flat (𝐱, 𝐮, �̇�, … , 𝐮(𝐬), 𝐩),     (7) 
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with a finite value 𝐬 ∈ 𝐍 and the smooth mapping function 𝐲flat : 𝐑𝐧𝐱 × (𝐑𝐧𝐮)𝐬+𝟏 ×

𝐑𝐧𝐩 → 𝐑𝐧𝐲 that is called flat output in the literature. With the flat output, the system states 

and control inputs are expressed as: 

𝐱 = 𝚿𝐱 (𝐲
flat , �̇�flat , … , 𝐲flat (𝐫) , 𝐩),      (8) 

𝐮 = 𝚿𝐮 (𝐲
flat , �̇�flat , … , 𝐲flat (𝐫+𝟏) , 𝐩),     (9) 

with the mapping functions 𝚿𝐱: (𝐑
𝐧𝐲)𝐫+𝟏 × 𝐑𝐧𝐩 → 𝐑𝐧𝐱  and 𝚿𝐮: (𝐑

𝐧𝐲)𝐫+𝟐 × 𝐑𝐧𝐩 →

𝐑𝐧𝒖 , and assuming a quadratic system 𝐝𝐢𝐦 𝐲flat = 𝐝𝐢𝐦 𝐮. When applying the flatness 

concept, it was shown that parameter sensitivities and the reliability of parameter esti-

mates, respectively, could be improved in the case of ILS [6] or when combining the OLS 

with ILS [7,8]. However, in process systems engineering for instance, besides lumped-

parameter systems (i.e., ordinary differential equations) distributed-parameter systems 

described via partial differential equations are frequently applied. In this case, the differ-

ential flatness approach has to be generalized [5,9–11].  

2.3. Neural ordinary differential equations 

In data science and deep learning, neural networks are frequently used to build em-

pirical models. A neural network is a group of interconnected neurons with one or more 

hidden layers depending on the network’s specific task. Technically, the ith neural net-

work layer, 𝑁𝑁𝐿𝑖(𝑥): 𝑅
𝑑𝑖−1 → 𝑅𝑑𝑖 , contains 𝑁𝑖 neurons. Here, 𝑁𝑁𝐿𝑖(𝑥) is specified with 

the weight matrix, 𝑊𝑖 ∈ 𝑅𝑑𝑖×𝑑𝑖−1, and the bias vector, 𝑏𝑖 ∈ 𝑅
𝑑𝑖 . And thus, for instance, a 

feed-forward neural network reads as: 

𝑁𝑁𝐿0(𝑥) = 𝑥 ∈ 𝑅
𝑑0 ,

𝑁𝑁𝐿𝑗(𝑥) = 𝜎(𝑊
𝑗𝑁𝑁𝐿𝑗−1(𝑥) + 𝑏𝑗) ∈ 𝑅

𝑑𝑗

∀1 ≤ 𝑗 ≤ 𝐼 − 1

𝑁𝑁𝐿𝐼(𝑥) = 𝑊
𝐼𝑁𝑁𝐿𝐼−1(𝑥) + 𝑏𝐼 ∈ 𝑅

𝑑𝐼 .

 ,   (10) 

When it comes to the so-called neural ordinary differential equations, the governing 

equations read as: 

�̇�(𝐭) = 𝐍𝐍(𝐱(𝐭), 𝐮(𝐭), 𝐩), 𝐱(𝐭𝟎) = 𝐱𝟎.    (11) 

Neural ODEs offer a promising approach for hybrid modeling and system identifi-

cation [12–15]. Furthermore, the neural network's architecture can be optimized to repre-

sent experimental data better. This could be done in conjunction with optimal experi-

mental design methods [3] to improve the accuracy of system identification further. 

3. Case Study  

Determining kinetic parameters of (diffusion-type parabolic) PDEs (e.g., Eq. (12)) has 

been extensively studied, including chromatography and adsorption processes [2,16–19], 

respectively.  

𝛛𝛟

𝛛𝐭
= 𝐩

𝛛𝟐𝛟

𝛛𝐱𝟐
+ 𝐮(𝐱, 𝐭)       (12) 

Following the numerical solution and the finite difference method (Eq. (13)) of the 

diffusion-type PDE, a set of coupled ODEs is obtained, which can be written in the state-

space form as shown in Equation (14).  

𝛛𝟐𝛟

𝛛𝐱𝟐
≃
𝛟𝐢+𝟏−𝟐𝛟𝐢+𝛟𝐢−𝟏

𝚫𝐱𝟐
       (13) 
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𝛛𝛟𝟏

𝛛𝐭
=

𝐩

𝚫𝐱𝟐
𝛟𝟐 −

𝟐𝐩

𝚫𝐱𝟐
𝛟𝟏 +

𝐩

𝚫𝐱𝟐
𝛟𝟎 + u1(𝐭),

𝛛𝛟𝟐

𝛛𝐭
=

𝐩

𝚫𝐱𝟐
𝛟𝟑 −

𝟐𝐩

𝚫𝐱𝟐
𝛟𝟐 +

𝐩

𝚫𝐱𝟐
𝛟𝟏 + u2(𝐭),

𝛛𝛟𝟑

𝛛𝐭
=

𝐩

𝚫𝐱𝟐
𝛟𝟒 −

𝟐𝐩

𝚫𝐱𝟐
𝛟𝟑 +

𝐩

𝚫𝐱𝟐
𝛟𝟐 + u3(𝐭),

⋯  
𝛛𝛟𝐍−𝟏

𝛛𝐭
=

𝐩

𝚫𝐱𝟐
𝛟𝐍 −

𝟐𝐩

𝚫𝐱𝟐
𝛟𝐍−𝟏 +

𝐩

𝚫𝐱𝟐
𝛟𝐍−𝟐 + uN-1(𝐭),

𝛛𝛟𝐍

𝛛𝐭
=

𝐩

𝚫𝐱𝟐
𝛟𝐍+𝟏 −

𝟐𝐩

𝚫𝐱𝟐
𝛟𝐍 +

𝐩

𝚫𝐱𝟐
𝛟𝐍−𝟏 + uN(𝐭).

     (14) 

Practically, the parameter identification problem for this academic case study is to 

determine the diffusion parameter 𝒑 in this system to represent the actual physical pro-

cess being modeled accurately. This can be challenging, as even minor changes in the co-

efficient value can result in significant changes in solution behavior or vice versa. How-

ever, it is often possible to obtain reasonable estimates for the diffusion parameter with 

careful analysis and experimentation [2,18], including the proposed concept of combining 

systems theory with differential flatness and deep learning. In particular, when assuming 

that all states in Eq. (14) are measurable, i.e., 𝐲𝐢 = 𝛟𝐢, ∀ 𝟏 ≤ 𝐢 ≤ 𝐍,  and that the output 

derivatives, i.e., �̇�𝐢 , ∀ 𝟏 ≤ 𝐢 ≤ 𝐍, exist, then the related equation system (Eq. 15) can be 

transformed to determine the input variables, 𝐮𝐢 , ∀ 𝟏 ≤ 𝐢 ≤ 𝐍, accordingly.  

(

 
 

�̇�𝟏(𝐭)

�̇�𝟐(𝐭)
⋯

�̇�𝐍−𝟏(𝐭)
�̇�𝐍(𝐭) )

 
 
=

(

 
 
 
 
 
 

−
𝟐𝐩

𝚫𝐱𝟐

𝐩

𝚫𝐱𝟐
𝟎 𝟎 ⋯ 𝟎 𝟎 𝟎 𝟎

𝐩

𝚫𝐱𝟐
−

𝟐𝐩

𝚫𝐱𝟐

𝐩

𝚫𝐱𝟐
𝟎 ⋯ 𝟎 𝟎 𝟎 𝟎

𝟎
𝐩

𝚫𝐱𝟐
−

𝟐𝐩

𝚫𝐱𝟐

𝐩

𝚫𝐱𝟐
⋯ 𝟎 𝟎 𝟎 𝟎

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎
𝐩

𝚫𝐱𝟐
−

𝟐𝐩

𝚫𝐱𝟐

𝐩

𝚫𝐱𝟐

𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎
𝐩

𝚫𝐱𝟐
−

𝟐𝐩

𝚫𝐱𝟐)

 
 
 
 
 
 

(

 
 

𝐲𝟏(𝐭)

𝐲𝟐(𝐭)
⋯

𝐲𝐍−𝟏(𝐭)
𝐲𝐍(𝐭) )

 
 
+

+

(

  
 

1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 1 0
0 0 0 ⋯ 0 1)

  
 

(

 
 
 

u1(𝐭)

u2(𝐭)

u3(𝐭)
⋯

uN-1(𝐭)

uN(𝐭) )

 
 
 

  

 

(15) 

Moreover, when dealing with measurement data instead of the full model system 

(Eq. (15)), the neural ODE framework (Eq. (11)) is used as a surrogate model to approxi-

mate the output functions and their derivatives. In particular, the following multilayer 

perceptron (MLP) setting is used: two hidden layers with 400 nodes each; input and out-

put layer with 198 nodes each; tanh as activation function. To train the resulting neural 

ODE system, simulated data with 𝐭𝒊+𝟏 − 𝐭𝐢 = 𝟎. 𝟏 , 𝚫𝐱 = 𝟎. 𝟎𝟏 , 𝐭 ∈ [𝟎, 𝟐] , 𝐱 ∈ [𝟎, 𝟏] , 

𝚽(𝐭𝟎, 𝐱) = 𝐬𝐢𝐧(𝟐𝝅𝒙) ,𝚽(𝐭, 𝐱 = 𝟎) = 𝟎,𝚽(𝐭, 𝐱 = 𝟏) = 𝟎 , and 𝐩 = 𝟎. 𝟏  are used in dimen-

sionless form. Figure 1(a) shows the model response without any distributed control ac-

tion, i.e., 𝐮(𝐭) = 𝟎. The diffusion effect can be seen very clearly, as the initial differences 

along the spatial axis at the start time 𝐲(𝐭𝟎, 𝐱) decrease over the simulation time. Accord-

ingly, a different diffusion parameter 𝒑 would lead to a different degradation profile, re-

flecting a corresponding sensitivity of the model. Note that this parameter sensitivity al-

lows, in principle, a practical identification of the model parameter when applying OLS 

with experimental data and Equation (2). Alternatively, the differential flatness approach 

can be used to impose a desired process behavior. To this end, the necessary but parame-

ter-dependent calculated input variables can be used for parameter estimation following 

the mentioned ILS concept and Equation (4). In Figure 1(b), for example, an output profile 

can be seen in which there are no changes over time in the course of the simulation. Please 

note that the corresponding input profile was determined using the flatness concept com-

bined with the neural ODE system and the specified training setting.  
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(a) (b) 

Figure 1. Model response when: (a) Zero input profile applied (i.e., zero control action); (b) Dedi-

cated input profile applied to compensate for the diffusion effect. 

The reconstructed input and the generated output data from Figure 1(b) will be used 

for the sensitivity analyses. Similar to the output profile, the calculated input profile de-

pends on the diffusion parameter and, thus, is sensitive to its parameter variation. The 

sensitivities of the output data and the generated control input, corresponding to a varia-

tion of the diffusion parameter 𝑝,  are analyzed using Equations 5 and 6. The resulting 

sensitivity plots are shown in Figure 2. Here, the output parameter sensitivity (Figure 2(a)) 

is zero at the starting time, and its absolute values increase at 𝐱 = 𝟎. 25 and 𝐱 = 𝟎. 75, 

respectively. In the case of the input parameter sensitivity (see Figure 2(b)), these sensitiv-

ities are at their peak from the very starting time, and their absolute values are 3-4 times 

higher than the output parameter sensitivities. Moreover, as mentioned in Section 2, 

higher parameter sensitivities, in turn, imply better parameter estimates. Consequently, it 

could be comfortably said that the parameter estimation could be better done using the 

control input generated by combining the flatness property with the neural ODE concept. 

  

(a) (b) 

Figure 2. Parameter sensitivity of the diffusion parameter p: (a) Using OLS to define the parameter 

identification problem; (b) Using ILS to define the parameter identification problem. 

4. Conclusions 

Parameter identification is a fundamental problem in systems and control theory. 

This work successfully demonstrated that a parameter identification problem, which eval-

uates input least squares (ILS) instead of ordinary least squares (OLS), results in different 

parameter sensitivities and, in this particular case, an improved parameter sensitivity 



Proceedings 2022, 69, x FOR PEER REVIEW 6 of 6 
 

 

range. Here, our original contribution is the proper combination of advanced systems the-

ory concepts (i.e., differential flatness) and recent developments in data science with neu-

ral ordinary differential equations. We applied our method to synthetic data generated. 

Here, we showed that ILS and related parameter sensitivities lead to a significantly higher 

parameter sensitivity range of the diffusion parameter than OLS-related parameter sensi-

tivity. The improved parameter sensitivity range suggests that ILS may result in better 

parameter estimates than OLS but might critically depend on the neural ODE system set-

ting and data quality – aspects addressed in ongoing research. Future work will also focus 

on advanced model inversion schemes which are not limited to differential flat systems. 
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