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Motivation

System Identification — can be applied to any industrial process where the

inputs and outputs can be measured to build its mathematical model.
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Standard Parameter Identification Framework
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Using local/global optimizers: Simplex,
Gradient-and stochastic gradient-based
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Input-based Parameter Identification Framework
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Input-based Parameter Identification Implementation Aspects
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Differential Flatness for Distributed-Parameter Problems

Usim [ ] YVsim Ydata [ ] Udata

Identification of Parametric Models: from Experimental Data; Eric Walter, and Luc Pronzato

Springer; Auflage: 1997.

Conditions for a system to be differentially flat:
» Existence of a flat output
yrlat = priat(x y,, ..., us,p)
 Fulfilling the following conditions:
— x(yflat flat _,yflata, p)

. a+1
U= Lpu(yflat’yflat, ___’yflat ’p)

dim y/'% = dimu
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Case Study: Diffusion-type Problem

Considering a parabolic PDE: o
aq) azcl) + t LB RB
o, — P35 T UL, 2 X >
ot p axz ( ) g8 . v N1 N

with p = 0.1 and Ug = Sin(ZTL'X). Fig. 1:A simple diffusion system.

= The system is differentially flat with a flat output defined as the vector:

yflat — [ytk,ll Ytk,z: Ly ytk,N]

where y corresponds to the measured output of P.
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Case Study: Diffusion-type Problem + Neural ODEs

Considering a parabolic PDE:
0P

dx?2

74¢)

F
with p = 0.1 and uy = sin(2mx).

+ u(x,t)

No model,
Only measurements

~

/An alternative approach...

NNL,(x) = x € R0,
NNL;(x) = o(WINNL;j_; (x) + b;) € RY
Vi<j<I-1
NNL;(x) = WINNL;_, (x) + b; € R4,

o /

= Uses neural ODEs to get the data-driven
model of the process under study, generally

represented as:

{a‘c(t) = NN (x(), u(t), p);
x(to) = xg
= This acts as a surrogate model — the output

functions and their derivatives are derived.

v' Discovers and creates numerical solutions

v' Including time derivatives

v Might be combined with process knowledge
(i.e., physics informed neural networks)
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Control Input by Model Inversion

= Control input (at a particular point in dimension) in time domain 1s calculated using the formula:

. % 2p p
u(ytk,l) = Y11 — m¢tk,N+1 + Az YN T pr VeN-1

= Extending this throughout the dimensional space — new control u 4,44, fed back to get an effective

control of diffusion.
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Fig. 2a: A conventional diffusion profile for the chosen diffusion coefficient p = 0.1. Fig. 2b: Compensated diffusion profile by closing the loop with ug4¢, from the inverse model.
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Parameter Sensitivity Analyses

Differential flatness Ce
— := parameter sensitivities based on output profiles

1. p
Ydata Inverse Udata |:> ap
model 2 u

— := parameter sensitivities based on input profiles
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Fig. 3: Sensitivities to the diffusion parameter variation: (a) based on the measured output: (b) based on the re-constructed input.
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Conclusions

= Standard framework for parameter identification which gets its loss function based on the output data
1s given an advancement — introducing an input-based framework.

= Differential flatness concept — to calculate the control input.

* The surrogate model involving neural ODEs — to get the output functions and their derivatives.

= Sensitivity analyses — based on the output data and the control input.

= Input-based analysis — higher sensitivity value, so better probability to identify the parameter.

= But the calculated input u,,¢, depends on the quality of model inversion and the neural ODE

surrogate model — could be improved using more optimization design tools.
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