

Resveratrol, a novel inhibitor of the NorA efflux pump and resistance modulator in *Staphylococcus aureus*

Madalena Santos¹, Raquel Santos¹, Susana Ferreira¹

¹CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal

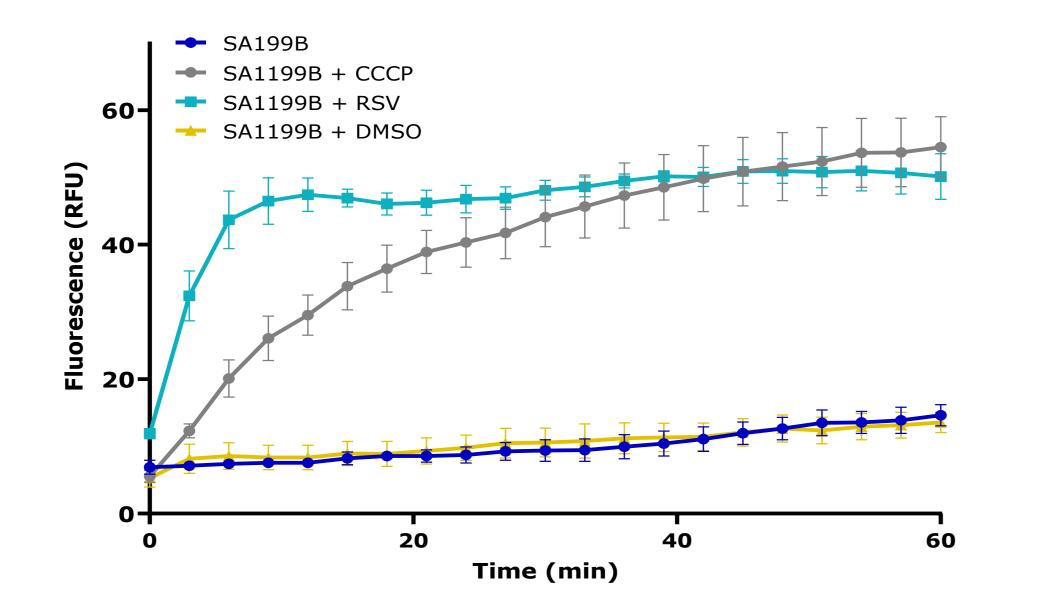
- Among the bacterial resistance mechanisms, the active efflux pumps play a role in the extrusion of different molecules, and thus contribute for antimicrobial resistance [1].
- S. aureus is a Gram-positive bacterium that can present
 This resistance to various antibiotics, for which NorA, a predominant comp efflux pump of these strains, is known to promote resistance to resist fluoroquinolones [2].
- Thus, the inhibition of this efflux pump may modulate resistance in S. aureus, namely to fluoroquinolones [3].
 - This study aimed to investigate the ability of a natural compound, resveratrol (RSV), to modulate fluoroquinolones resistance in *S. aureus*.

Antimicrobial ActivityModulation AssayEthidium Bromide Accumulation AssayImpact on Frequency of ResistancePost-antibiotic Effect (PAE)

Results

Table 1 - Minimum inhibitory concentrations (MIC) of RSV, Norfloxacin (Nor) and ethidium bromide (EtBr) against the *S. aureus* strains.

Bacterial Strains —	MIC (µg/mL)		
Dacterial Strains	RSV	Nor	EtBr
SA1199 (wildtype)	200	0.25	2
SA1199B (norA++)	100	32	16


- The MIC of Nor and EtBr against *S. aureus* strains decreased when in presence of RSV.
- In the presence of RSV, the norA++ strain had an augmented fluorescence, consequence of the accumulation of EtBr.

8325-4 (wildtype)	400	0.25	2
SAK1758 (<i>\(\Delta\)norA</i>)	200	0.125	0.25

Table 2 - Modulation of antimicrobial activity of Nor and EtBr in absence and presence of RSV (at ¼ MIC) against *S. aureus* strains.

Bacterial Strains –	MIC (µg/mL)			
Dacterial Strains	Nor	Nor+RSV	EtBr	EtBr+RSV
SA1199 (wildtype)	0.25	2*) 0.125	2	4 *)
SA1199B (norA++)	32 (1	2	16 📢	
8325-4 (wildtype)	0.25	2*) 0.125	2 (3	2 *) 0.0625
SAK1758 (ΔnorA)	0.125 (1*) 0.125	0.25	4*) 0.0625

* Fold reduction in MIC.

Table 3 - Mutation frequency of *S. aureus* SA1199.

	Mutation frequency with norfloxacin			
Resveratrol (µg/mL)	4 x MIC (1µg/mL)	8 x MIC (2μg/mL)	16 x MIC (4µg/mL)	
0	1.87 x 10 ⁻⁵	5.27 x 10 ⁻⁷	4.03 x 10 ⁻⁸	
50	2.16 x 10 ⁻⁷	1.93 x 10 ⁻⁸	< 5.31 x 10 ⁻¹⁰	

Table 4 - PAE of Nor alone and in combination with RSV against *S. aureus* SA1199B.

	Mean PAE (h) ± SD		
Regimen	0.25× MIC Nor (8 μg/mL)	0.5× MIC Nor (16 µg/mL)	MIC Nor (32 µg/mL)
Nor	2.19 ± 0.25	2.24 ± 0.22	2.65 ± 0.18
Nor + RSV (25 μg/mL)	2.83 ± 0.10	$2.80 \pm 0,24$	3.02 ± 0.04

 There was a decrease in mutation prevention concentration of Nor when combined with RSV.

Fig. 1 - Effect of RSV on intracellular accumulation of EtBr, in *S. aureus* SA1199B (norA++).

 The combination of Nor at 32 mg/L with RSV showed a most extended PAE than the antibiotic alone.

Conclusion

Our findings demonstrated that resveratrol could modulate the norfloxacin-resistance, by inhibition of NorA, increasing the

effectiveness of this antibiotic against *S. aureus*.

References

[1] N. P. Kalia et al., J. Antimicrob. Chemother., vol. 67, no. 10, pp. 2401–2408, 2012, doi: 10.1093/jac/dks232.
[2] D. Muniz, C. Barbosa, I. de Menezes, E. de Sousa, R. Pereira et al., Food Chem., vol. 337, pp. 127776, 2021, doi: 10.1016/j.foodchem.2020.127776.

[3] D. Hwang and Y.-H. Lim, FEMS Microbiol. Lett., vol. 366, Feb. 2019, doi: 10.1093/femsle/fnz030.

Acknowledgments

This work was developed within the scope of the CICS-UBI projects UIDB/00709/2020 and UIDP/00709/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES.

