Is there a relationship between biofilm forming-capacity and antibiotic resistance in Staphylococcus spp.? In vitro results

Matthew Gavino Donadu^{1,2}, Marco Ferrari², Vittorio Mazzarello², Stefania Zanetti², Ivan Kushkevych³, Simon K.-M.R. Rittmann⁴, Anette Stájer⁵, Boglárka Ónódi⁵, Zoltán Baráth⁶, Edit Urbán⁷, Márió Gajdács^{8,*}

¹Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy; ²Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; ³Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; ⁴Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria; ⁵Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary; ⁶Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary; ⁷Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, 7624 Pécs, Hungary; ⁸Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary

Correspondence to: gajdacs.mario@stoma.szote.u-szeged.hu; 6720 Szeged, Tisza Lajos krt. 63., Hungary

Introduction

Staphylococcus species are considered important as members of the normal skin microbiota, in addition to being common pathogens in human and animal infections. In addition to S. aureus, other members of the genus are now widelyrecognized pathogens, as especially in immunocompromised individuals. One of the most important virulence factors of staphylococci is the formation of biofilm (slime), which enhances their survival on inanimate surfaces, in addition to providing protection against immune cells and antibiotics in There has been VİVO. considerable interest in the study relationship between of the biofilm formation the and antibiotic resistant phenotype, the results in the however, available literature are inconsistent. Thus, this study aims to investigate the correlation between biofilm formation and

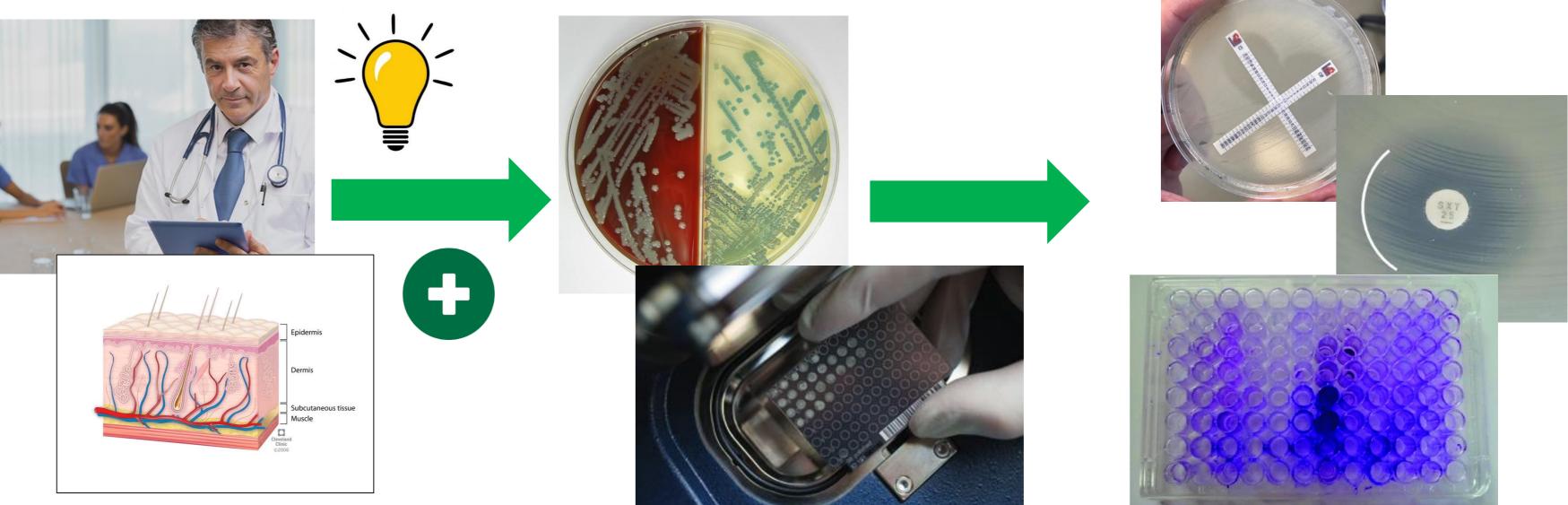
Results and Discussion

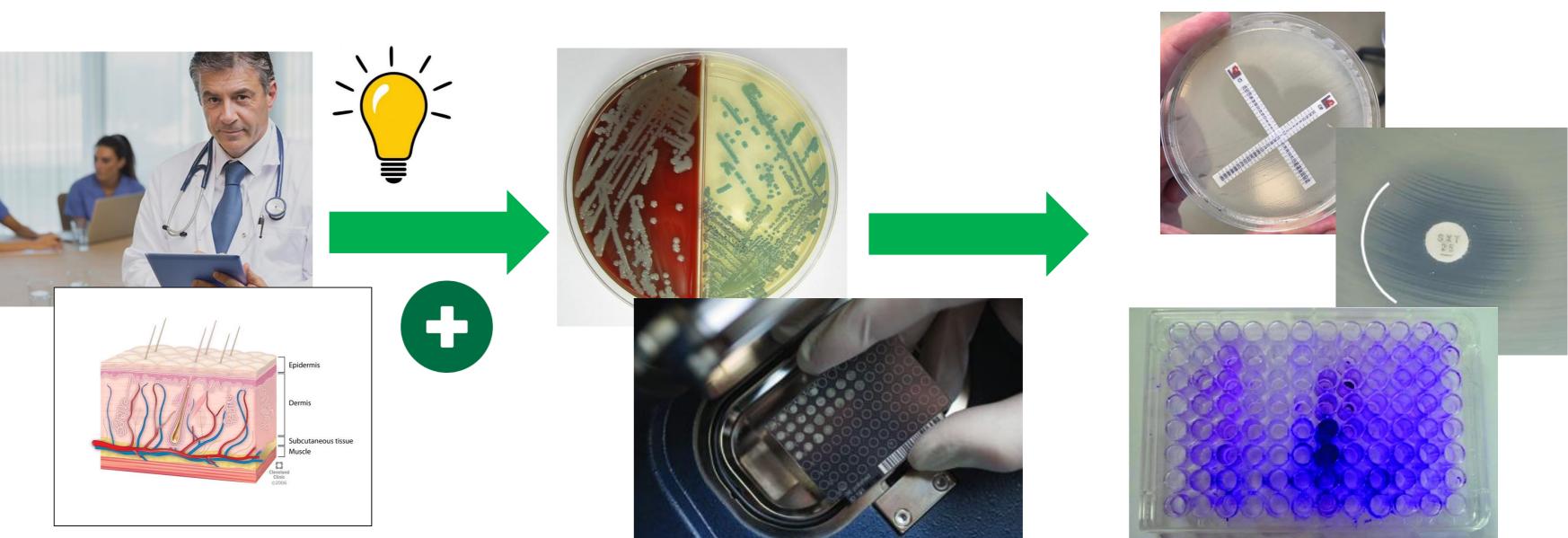
Table 1. Species-distribution of *Staphylococcus* spp. included in the study (n=180)

Species name	n	%
S. epidermidis	72	40.00
S. lugdunensis	18	10.00
S. haemolyticus	16	8.89
S. capitis	12	6.67
S. hominis	9	5.00
S. xylosus	9	5.00
S. cohnii	8	4.44
S. saprophyticus	8	4.44
S. intermedius	8	4.44
S. pseudointermedius	8	4.44
S. schleiferi	6	3.33
S. warneri	6	3.33

Based on the results of the AST, resistance rates in these isolates were the following: erythromycin 48.9% (n=88), clindamycin 51.1% (n=92), norfloxacin 27.8% (n=50), gentamicin 26.1% (n=47), trimethoprim-sulfamethoxazole 51.1% (n=92), rifampin 24.4% (n=44), tigecycline 1.1% (n=2), fusidic acid 1.7% (n=3); isolates were all susceptible to linezolid, synercid, ceftaroline and vancomycin. Methicillin-resistance was observed in 47.2% (n=85) isolates.

In the biofilm-formation assay, the OD_{570} values of the controls ATCC 12224 and ATCC 35984 were 0.145 ± 0.018 and 0.608 ± 0.045 , respectively. Classification breakpoints for our isolates (based on Stepanovic et al., 2007) were the following: non-biofilm producer: OD≤0.199, weak biofilm producer: $0.398 \ge OD > 0.199$, medium biofilm producer: $0.796 \ge OD > 0.398$, and strong biofilm


antibiotic resistance IN Staphylococcus spp. isolates using phenotypic methods.


Materials and methods

A total of n=180 *Staphylococcus* spp. isolates were included in this study (the species-distribution is presented in **Table 1**). S. epidermidis ATCC 35984 (positive) for biofilm-formation) and ATCC 12224 (non-biofilm-producer) were used as control strains. Sample processing was carried out according to established protocols (**Fig.** 1) Susceptibility-testing (AST) was performed using standardized disk diffusion (Oxoid, Basingstoke, UK) or E-test (Liofilchem, Roseto degli Abruzzi, Italy) methodologies on Mueller-Hinton agar. Biofilm-formation was evaluated using a crystal violet microtiter plate-based method. Absorbance at 570 nm (OD_{570}) was measured in the plates using a spectophotometric plate reader, with OD_{570} values expressed as mean ± SD. Statistical analyses were carried out using SPSS 22.0.

producer: OD>0.796. Based on this classification n=13 (7.2%), n=13 (7.2%), n=42 (23.3%) and n=113 (62.3%) staphylococcal isolates were non-biofilmproducing, weak, moderate and strong biofilm producers, respectively. For biofilm-formation, no significant association was noted on the basis of methicillinresistance (sensitive: 0.881±0.309 vs. resistant: 0.890±0.347; p=0.133). In addition, no significant differences were seen for resistance towards erythromycin, clindamycin, norfloxacin 27.8%, gentamicin 26.1% and trimethoprim-sulfamethoxazole. Rifampin-resistant isolates were more potent biofilm-producers, than their susceptible counterparts (S: 0.802±0.296 vs. R: 1.194±0.221; p=0.024).

The association of the antibiotic-resistant phenotype and biofilm-formation is still inconclusive, due to the heterogeneity of the results in the presently available studies, however, the understanding of these mechanisms in Staphylococcus spp. is crucial to appropriately address the therapy and eradication of these pathogens.

Figure 1. Schematic algorithm for sample processing in the study

Acknowledgements

M.G. was supported by the János Bolyai Research Scholarship (BO/00144/20/5) of the Hungarian Academy of Sciences. The research was supported by the UNKP-21-5-SZTE-540 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research Development and Innovation Fund. M.G. would also like to acknowledge the support of ESCMID's "30 under 30" Award.

The 2nd International Electronic Conference on Antibiotics—Drugs for Superbugs: Antibiotic Discovery, Modes of Action And Mechanisms of **Resistance**; **15-30 June**, **2022** sciforum-061345

