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Abstract: Alkaliphilic micromycetes are capable of synthesizing antibiotic substances that are active 

against opportunistic and clinically significant strains of microorganisms that cause various infec-

tions. One factor in this ability is their extreme habitat, which favors the production of specific sec-

ondary metabolites. There are more and more studies on the discovery of new peptaibols found in 

micromycetes isolated from marine, saline and soda sources and other extreme habitats. Our previ-

ous studies revealed lipopetaibols emericellipsins A-E, which are produced by the alkaliphilic mi-

cromycetes E. alkalina. EmiA was similar in its action to amphotericin B against resistant strains of 

pathogenic micromycetes that cause aspergillosis or cryptococcosis. Continuing our research, we 

focused on the diversity of antimicrobial peptides produced by Emericellopsis strains isolated from 

various soda and saline habitats.  

In total, 38 alkaliphilic and alkalitolerant strains of the genus Emericellopsis (E.alkalina, E. cf. maritima, 

E. cf. terricola, Emericellopsis sp.) isolated from various extreme habitats and belonging to soil-eco-

logical marine, terrestrial and soda soil ecological clade. As a result of screening, in addition to the 

target component of EmiA, we were also able to identify new compounds. Analysis of strains of 

Emericellopsis sp. (1KS17-1, 2KS17-1), belonging to marine and terrestrial clades from chloride soils, 

revealed another new form of EmiA devoid of hydroxyl (dEmiA). The biological activity of dEmiA 

against Aspergillus niger and Candida albicans with MICs of 4 and 2 µg/mL was consistent with that 

of EmiA. The target component of EmiA, in addition to biological activity, also showed a strong 

inhibitory effect on cell proliferation and viability of the HCT 116 cell line, depending on the dose 

and time, and induced apoptosis. 
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1. Introduction 

Opportunistic and pathogenic fungal infections are one of the causes of high mortal-

ity which is about 1.5 million people in a year. Invasive mycoses, in particular invasive 

aspergillosis, are often opportunistic infections in diseases such as oncology, HIV, covid-

19 and others. 

Antimicrobial peptides are interesting as potential source of new antifungals. They 

are able to be synthesized by almost all living organisms [1–5]. 

Peptaibols, the largest group of peptaibiotics, are a class of linear peptides that have 

an acylated N-terminal group, a C-terminal amino acid and a high content of α-aminoiso-

butyric acid (Aib) - approximately 40% Aib in long peptaibols and from 14 to 56% for short 

peptaibols [6–14]. Peptaibols the dominant secondary metabolites of fungi among others, 

including mycoparasites fungi [8,10,11,15,16]. 

About 30 genera of micromycetes are known, mainly belonging to the order 

Hypocreales, which are promising for the production of peptaibols [3,5,17–21]. At the mo-

ment, most peptaibols have been found in fungi of the genus Trichoderma, and the most 

studied species are T. viride, T. brevicompactum, T. virens, T. parceramosum/T. ghanense and 

T. longibrachiatum [15,22–24]. Fungi of the genus Emericellopsis are also known as produc-

ers of the peptaibols zervamycins, bergofungins, emerimycins, and emericillipsins 

[6,7,17]. 

Fungi of the genus Emericellopsis are ubiquitous, including in the terrestrial and ma-

rine environment, and they are also one of the most important dominants on the shores 

of soda and salt lakes. According to recent studies of the phylogeny of multilocus genes, 

these species are placed in three ecological clades: terrestrial, marine, and soda soils [25-

28]. Fungi of the genus Emericellopsis are capable of biosynthesis of peptaibols with anti-

bacterial and antifungal activity: antiamebins I-XI from E. salmosynnemata and E. synne-

maticola, bergofungins A-D from E. donezkii, emerimycins II, III, IV. from E. microspora and 

E. minima, heptaibin from Emericellopsis sp., servamycin from E. salmosynnemata. Cur-

rently, according to the Norine database, a total of 32 peptides have been found, which 

were grouped into 5 families. In our previous studies, we managed to discover a new 

complex of peptaibols with antimicrobial activity, called Emericellipsins A-E [18,27–30]. 

The leader compound EmiA was able to inhibit clinical isolates of fungi of the genera 

Aspergillus, Saccharomyces and Cryptococcus which were resistant to fluconazole and am-

photericin B [18]. 

2. Materials and Methods 

Molecular studies to determine the species of strains were carried out using PCR am-

plification of spacer rDNA as described previously [31]. The resulting sequences were de-

posited in Gen-Bank [32]. A phylogenetic reconstruction was made which included 24 

strains of Emericellopsis. The alignment was calculated using the MAFFT v. 7.429 [33] as 

well as when using the L-INS-I strategy. The most suitable substitution model for align-

ment was selected based on the Akaike Information Criterion (AIC), for this purpose the 

IQ-TREE web service was used [34]. 

The effect of pH on the growth rate of cultures was evaluated in triplicate using var-

ious variants of nutrient media based on citrate, phosphate and carbonate buffers. Such 

pH variants as 4, 5, 6, 7, 8, 9, 10 (± 0.2) were tested. 

The preparation of extracts from the culture liquid (CL) as well as the isolation of 

peptaibol from the obtained extracts, was carried out using the methods described earlier 

[31]. 

In order to determine the molecular weights MALDI-TOF MS was used and the mass 

measurement accuracy is about 1 Da. The technique itself was described in detail in our 

study earlier [31]. 
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The antimicrobial activity of the extract containing peptaibols was measured using 

the disk diffusion method.  To this goal disks with a diameter of 6 mm which contained 

40 μL of the test sample were placed on dishes with PDA (Sigma-Aldrich, St. Louis, MO, 

USA). Zones of inhibition were measured after 24 h at 28 °C. As a control the activity of 

amphotericin B (Sigma-Aldrich) was measured on the same plates. The value of the min-

imum inhibitory concentration (MIC) of each substance was determined in accordance 

with the recommendations of CLSI/NCCLS M27-A3 and M38-A2 [35,36]. The strains Can-

dida albicans ATCC 14053 and Aspergillus niger ATCC 16404 were obtained from the Amer-

ican Type Culture Collection (ATCC, Manassas, Virginia, USA). 

A colorectal carcinoma (HCT116) cell line (ATCC®  CCL-247TM) was used for the 

real-time cell analyzer test. To this goal the cells were thawed and then passaged 2–3 times 

and cultured in a cell incubator at 5% CO2 and 37 °C using DMEM nutrient medium with 

10% fetal bovine serum. Real-time proliferation analysis was performed using the iCELLi-

gence RTCA system. The density of the HCT116 cell suspension was 1 × 105 cells/mL. 300 

µL of the original cell suspension was added to each well of the device, after 1 day the 

nutrient medium was changed to a new one that contained different concentrations of 

EmiA. The medium without peptide was used as a control. Cells were incubated for two 

days. The CI value was set by the RTCA software package based on the impedance signal. 

3. Results 

The 22 strains used in the work were previously identified by 6 loci (LSU and SSU 

rDNA, RPB2, TEF1-α, β-tub, and ITS region) as E. alkalina [27]. In addition, 16 strains of 

the genus Emericellopsis isolated over the period 2017–2018 were also studied. Thus, in 

total, 38 strains of fungi of the genus Emericellopsis isolated from the soils of the margins 

of various soda and salt lakes of the Kulunda steppe (Altai, Russia) were studied in the 

work. As a result of the research, 16 new added strains were grouped into 3 ecological 

clades: 10 strains of E. alkalina fell into the “soda soil” clade, 4 strains into the “marine” 

clade, and 2 strains ended up in the “terrestrial” clade. 2 strains from the marine clade 

were identified as Emericellopsis cf. maritima, 1 strain from the terrestrial clade was identi-

fied as Emericellopsis cf. terricola, some of the remaining strains were not identified among 

the known species and therefore they are marked as Emericellopsis sp. (Figure 1). 
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Figure 1. Maximum likelihood tree for the Emericellopsis genus based on partial sequences for ITS 

rDNA (including 5.8S rDNA) region. Branch lengths are proportional to the estimated number of 

nucleotide substitutions. Emericellopsis spp. and related species were clustered into a «Marine», 

«Soda soil» or «Terrestrial» clade. Taxa names of the isolates obtained in this study are highlighted 

in an asterisk. 

32 strains of E. alkalina were able to grow at pH from 6 to 10 units, while the optimal 

value was 9 units. Thus, all studied strains of E. alkalina exhibited an alkaliphilic pheno-

type. Other strains were assigned to the alkalinoresistant phenotype. Thus, 4 strains from 

the marine clade showed optimum growth at pH 7 or 8, but practically did not grow at 

higher pH values. One strain from the terrestrial clade had a growth optimum at pH 8 

and was able to grow at its higher values, another strain from the same clade showed a 

similar growth optimum at pH 7, but practically did not grow at higher values. 

We would like to note that the synthesis of the target compound EmiA for all studied 

strains of E. alkalina was possible only when grown under alkaline conditions. At the same 

time, EmiA could be detected both in extracts from the culture liquid and from the myce-

lium. A high content of lipopeptaibol EmiA was detected in 9 strains in mycelium extracts 

and in 5 strains in culture fluid extracts. The maximum amount was found in the culture 

fluid extract of the E101 type strain. 
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E. alkalina strains isolated from soda chloride-sulfate and chloride-sulfate soil types, 

as well as 2 strains from soda soils, are characterized by a high content of EmiA. In 2 

strains, among other species of fungi of the genus Emericellopsis, the presence of EmiA was 

also detected, and they are characterized by a higher content of the target compound in 

the mycelium compared to the culture liquid. Among other Emericellopsis sp. no EmiA 

was found, and they also don t́ have antifungal activity. We noted that strains with a high 

content of EmiA also synthesized EmiB-D homologues, while isolates from chloride and 

chloride-sulfate soils did not have them. 

We would like to note the results of scientific interest in the analysis of 2 strains of 

Emericellopsis sp. isolated from chloride soils and belonging to the marine and terrestrial 

clades. Biautography revealed two zones of growth inhibition of the A.niger test strain 

with average Rf values: 0.2 and 0.55 in the CHCl3:MeOH = 3:1 system. When analyzing 

the initial fraction using HPLC, two peaks were detected on the chromatogram: 1 (tR = 

37.3 min) and 2 (tR = 39.4 min) (Fig. 2a), each of which was collected separately and ana-

lyzed with using MALDI-TOF MS. Peak 1 had a molecular weight of 1050.7 Da, and peak 

2 had a molecular weight of 1032.7 Da (Figs. 2b and 2c). The identical nature of the mass 

distribution of the fragments was observed, which indicates the same nature of both sub-

stances. We would also like to note that the difference between the masses of the two 

peaks correlates with the mass of the water molecule (18Da). The chemical structure of the 

AHMOA residue contains a hydroxyl located one carbon atom away from the amide bond 

and is possibly a good site for water abstraction. In this case, a double bond should be 

formed between the corresponding carbon atoms while maintaining the principle of va-

lency. Therefore, the fragment with a molecular weight of 195 Da presumably refers to the 

residue of 2-amino-4-methyl-8-oxo-dec-6-enoic acid. Thus, the mass of 1050.7 Da is most 

likely related to EmiA because it corresponds to the calculated mass due to its structure, 

and the mass of 1032.7 Da to the dehydrated form of EmiA (dEmiA). dEmiA is a more 

hydrophobic analogue of EmiA. 

 

Figure 2. a. The Chromatogram of analyzed sample with HPLC method is presented. There only 

two peaks 1 and 2 were visualized with retention times 37.4 min and 39.3 min, correspondingly (on 

the chromatogram values are presented in volume units). The names of probably compounds are 

marked upper the corresponding peaks.  Both peaks were picked out with dotted rectangles colored 

in blue and green and were related to the corresponding MALDI-TOF MS specters. b. The MALDI-

TOF MS specter of chromatographic fraction related to peak with retention time of 37.4 min. c. The 

MALDI-TOF MS specter of chromatographic fraction related to peak with retention time of 39.3 

min. In the red rectangles the zoomed specters of masses are represented, and the major peaks 
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related to the masses of 1050.7 Da and 1032.7 Da, which correlate with masses of EmiA and dEmiA 

are marked with green and with yellow star, correspondingly. 

As we have shown earlier, the target compound EmiA had biological activity against 

the micromycetes Aspergillus niger ATCC 16404 and Candida albicans ATCC 14053, while 

the MIC values were 4 and 2 µg/mL, respectively [18, 29]. In our experiments with the 

above strains, dEmiA showed exactly the same activity (Table 1). Thus, it can be assumed 

that the single hydroxyl group of the EmiA does not have a decisive influence on the 

mechanism of action of our antimicrobial compound. Perhaps dEmiA is a premature form 

of EmiA. 

Table 1. Minimum Inhibitory Concentrations (MIC) of the EmiA and dEmiA against fungi, µg/mL. 

Minimal Inhibitory Concentration (MIC, µg/mL) 

Compound 

Strain EmiA dEmiA AmpB  FZ  

Aspergillus niger 

ATCC 16404 
4 4 1 2 

Candida albicans 

ATCC 14053 
2 2 0.25 4 

AmpB—amphotericin B; FZ—fluconazole. 

The target component of EmiA, in addition to biological activity, also showed a 

strong inhibitory effect on cell proliferation and viability of the HCT 116 cell line, depend-

ing on the dose and time, and induced apoptosis. At the same time differences in cell 

proliferation were observed under the influence of increasing concentrations of EmiA 

with a change in CI. After the addition of the peptide during the incubation period, the CI 

value changed depending on the value of the amount of the added peptide: in the control, 

from 0.4 to 1.3; at 0.25 μg/mL-from 0.4 to 1.1; at 1.0 μg/mL-from 0.4 to 0.7; at 4.0 μg/mL 

from 0.4 to 0.6; at 16.0 μg/mL-from 0.4 to 0.5 (Figure 3). 

 

 

Figure 3. Cell index of the HCT116 cell line at different concentrations of Emericellipsin A peptide: 

0.25 μg/mL; 1.0 µg/mL; 4.0 µg/mL; 16.0 µg/mL. 

4. Conclusion 

Our results show that lipopeptaibols EmiA, produced by the alkaliphilic micromy-

cete E. alkalina, are an alternative antibiotic used in medical practice, active against re-

sistant pathogens of aspergillosis. In terms of biological activity, EmiA is similar to am-

photericin B. At the same time, EmiA is not able to replace doxorubicin as a chemothera-

peutic agent, but it can be used for palliative treatment of cancer patients whose course of 

the disease is complicated by aspergillosis. 
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