ECAS 2022

The 5th International Electronic Conference on Atmospheric Sciences 16-31 JULY 2022 | ONLINE

Occupational risk assessment in E-waste plant: Progress achieved over years *

Giulia Simonetti^{1,*}, Leonardo Romani¹, Carmela Riccardi², Donatella Pomata², Patrizia Di Filippo², Francesca Buiarelli¹

'Electrical and electronic equipment' or 'EEE' means equipment which is dependent on electric currents or electromagnetic fields in order to work properly and equipment for the generation, transfer and measurement of such currents and fields and designed for use with a voltage rating not exceeding 1 000 volts for alternating current and 1 500 volts for direct current;

- ✓ an obligation for producers and distributors to finance a system for the recovery and recycling of products placed on the market ("extended producer responsibility" principle)
- measures aimed primarily at preventing the production of WEEE and their reuse, recycling and other forms of recovery to reduce the disposed waste volume.

Risks Associated with the End-of-Life Treatment of Electrical and Electronic Equipment

• The major hazards in the recycling chain are associated with the size reduction and separation steps. Shredding, grinding or other size reduction processes lead to generation of dust on which harmful substances can be absorbed

Components	Found in	Substances of concern
Cathode ray tubes	Old TV sets, PC monitors, oscilloscopes	Pb in cone glass Ba in electron gun getter Cd in phosphors
Printed circuit boards	Ubiquitous, from beepers to PCs	Pb, Sb in solder Cd, Be in contacts Hg in switches BFRs in plastics
Plastics	Wire insulation, plastic housing, circuit boards	Polyvinyl chloride (PVC) Brominated flame retardants (BFR) Polychlorinated biphenyl (PCB)

....HUMAN HEALTH RISK??

E-waste recycling can lead to direct or indirect exposure to a variety of hazardous substances that are contained in EEE or formed and released by unsafe recycling practices

□ Unsafe recycling techniques used to regain valuable materials often increase the risk for hazardous exposures.

Aim of work

□ Study of Risk Assessment of Workers Exposed to three different classes of compounds in both settled dust and airborne particulate matter (PM) over the years

Evolution of WEEE plant from 2017 to 2021

Sample collection

EXPOSURE PATHWAYS

Inhalation of particles

Accident ingestion of dust

Dermal absorption via particle contact

$$TCR = \sum CR_{inhalation} + CR_{ingestion} + CR_{dermal contact}$$

Ci	Ci is the contaminant concentration for each compound in PM		
	$(\mu g/m^3)$ and in settled dust $(\mu g/g)$,		
IngR	Ingestion rate (mg/day)		
EF	Exposure frequency (days/year)		
ED	Exposure duration (years)		
BW	Average body weight (kg)		
4 77			

- AT Averaging time (days or hours*)
- **CF** Conversion factor (kg/mg)
- **SFO** Oral slope factor $(mg/kg/day)^{-1}$
- **SA** Surface area of the skin that contacts soil (cm^2/day)

 $THQ = \sum HQ_{inhalation} + HQ_{ingestion} + HQ_{dermal contact}$

- **AF** Skin adherence factor for soil (mg/cm²)
- **ABS** Dermal absorption factor (dimensionless)
- **GIABS** Gastrointestinal absorption factor (dimensionless)
- **ET** Daily exposure time (8 h/d)
- **IUR** Inhalation unit risk $(mg/m^3)^{-1}$
- **RfC** Reference dose for inhalation (mg/m³)
- **RfD** Reference dose for ingestion/dermal contact

→ PRECAUTIONARY APPROACH

Conclusion

	2017	2021-Z1	2021-Z2	USEPA Recommended Values
TCR	1.03E-04	6.67E-05	6.68E-05	CR < 1 × 10−6 acceptable risk CR< 1 × 10−4 tolerable risk
THQ	1.31E-01	5.18E-02	7.09E-02	HQ <1 no appreciable risk HQ>1 appreciable risk

✓ In 2017, TCR data exceeded the tolerable values set by USEPA, whereas THQ results were lower than acceptable risk limits. In 2021, both TCR and THQ are lower than recommended values and about 60% below those found in 2017.

✓ Therefore, the plant modifications seem to have resulted in a risk reduction for the workers involved in the treatment of e-waste.