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Abstract: We have developed remote ground-based and satellite methods, hardware and software 

for studying atmospheric aerosols, clouds and the underlying surface in Eastern and Western Ant-

arctica. The ground-based equipment includes: (1) a CIMEL solar spectrum photometer, which 

measures the spectrum of solar radiation transmitted and scattered by the atmosphere, (2) a multi-

wavelength Raman lidar, which measures the vertical backscatter profile, (3) an albedometer, which 

measures the spectral albedo of the surface, primarily snow, (4) a reflectometer, which measures the 

directional spectral reflectance of snow. The ground-based measurement data were integrated with 

data from satellite radiometers MODIS or OLCI and the satellite lidar CALIOP. A synergy of the 

manifold data results in retrieval of various atmosphere and surface characteristics such as the aer-

osol optical depth, profiles of concentration of the fine and coarse aerosol fractions, spatial distribu-

tion of the effective snow grain size, fraction of outcrops etc. 

Keywords: East and West Antarctica; snow cover; atmospheric aerosols; AERONET; lidar sound-
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1. Introduction 

Research by Belarusian scientists in Antarctica began in 2006, when the Belarusian 

scientific group began measuring the ozone content in the atmosphere as part of the 52nd 

Russian Antarctic Expedition. In 2008, Belarusian scientists created the radiometric 

sounding station Vechernaya_Hill (67.66° S, 46.16° E) near Mount Vechernyaya [1], which 

became part of the AERONET global radiometric network [2,3]. 

In 2011–2015, the program of observations at the Belarusian scientific station, besides 

the solar radiometric observations, included measurements of the altitude dependence of 

optical parameters of the atmosphere by means of a lidar. A spectral albedometer for 

measuring the reflectance spectra of the earth’s surface was also made, and its perfor-

mance was successfully tested in Antarctica [4]. 
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Turkey has been conducting regular expeditions to the Antarctic since 2016 and plans 

to establish a stationary research station on the Antarctic Peninsula [5,6]. 

An important role in the formation of a monitoring system for the atmosphere and 

underlying surface in Antarctica is assigned to space observation systems. Algorithms to 

retrieve parameters of the snow surface from satellite measurements were developed 

[7,8]. The degree of coverage of the territory by snow and its average spectral albedo, as 

well as the level of pollution and the size of snow granules are the most important param-

eters that determine the radiation balance of polar regions. These data are necessary for 

studying the processes of metamorphism in the snow and ice cover of Antarctica. 

2. Combined Ground-Based and Satellite Investigations of Atmospheric Aerosols in 

the Region of Belarusian Antarctic station Gora Vechernyaya 

The methodology for aerosol sounding with ground- and satellite-based lidars and 

solar spectrometric systems (hereinafter called LRS, for Lidar & Radiometer Sounding) 

uses a synergistic approach to organization of measurements and development of algo-

rithms to process the combined data. The result of a complex experiment is a complete set 

of parameters of an optical aerosol model required to describe the process of radiative 

transfer in an aerosol layer stratified along height [9–11]. Whereas the sources of radio-

metric data in the LRS are stations of the AERONET, lidar data are provided by stations 

of lidar networks (EARLINET, AD-Net, CIS-LiNet) and the satellite lidar CALIOP. Now-

adays, the LRS is successfully used to study Eurasian aerosols [12]. In 2018, the first LRS 

measurements in Antarctica to study a long-range smoke transport to Enderby Land were 

performed at the Belarusian Antarctic station Gora Vechernyaya [13], and since than the 

LRS became a part of regular observations in Belarusian Antarctic expeditions. 

Figure 1 shows some results of optical observations at the Gora Vechernyaya station. 

  

(a) (b) 

Figure 1. Results of optical measurements at station Gora Vechernyaya: (a) AOD spectrum. Markers 

denote the measured spectral AOD and its standard deviations for the measurement period 2008–

2021. Straight lines are the linear regression of the spectral dependences in the logarithmic scale; the 

slopes are indicated in the legend. (b) Altitude distributions of the fine and coarse fractions averaged 

over 2019–2021. 

Observation seasons usually last from December to early March. The spectral distri-

bution of the AOD (Aerosol Optical Depth) have been averaged first across a season and 

then across years. The standard deviation refers to the dispersion of the season-averaged 
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values over years. The spectral dependences are approximated by a power law and rep-

resented in the plot by straight lines, the line slope shown in the legend being the exponent 

of the power law. 

Figure 1b presents the average height profiles of the volume concentration of fine 

and coarse particles according to terminology used in AERONET [2]. In this plot, the con-

centration profiles are normalized by the column amount, which is an integral of the con-

centration over height. 

The average column amount of the fine fraction is about 0.05 μm as compared to 

0.005 μm for the coarse one, i.e., the column amount of the fine mode at the region of 

Mount Vechernyaya is about 10 times higher than that of the coarse one. 

3. Snow Cover Studies in the Regions of East and West Antarctica Using Satellite Data 

3.1. Algorithm ASAR 

The snow cover has a significant influence on the Earth’s albedo and, accordingly, on 

its climate. The development of satellite sensing methods, in particular, monitoring of 

snow age, degree of pollution and grain size, becomes especially important for the polar 

regions, where direct measurements are difficult. 

The main feature of the snow cover of Antarctica is its purity. According to [14], the 

average concentrations of black carbon are 0.1–0.3 ng/g at the South Pole station and 0.6 

ng/g at the Vostok station (coast). The peak concentration at the Vostok station reached 7 

ng/g, which is still too low to show up in optical measurements. 

On the other hand, strong winds over Antarctica in winter, as well as snowmelt in 

summer, result in rock outcrops. The outcrops can be fragmented, i.e., occupy limited ar-

eas of several hundred square meters. Since satellite radiometers, such as MODIS, have a 

spatial resolution of about 1 × 1 km2, a pixel may be mixed: partly occupied by snow, 

partly by rocks, which can significantly reduce the pixel albedo in the visible range. Thus, 

to correctly determine the size of snow grains, it is required to estimate the fraction of a 

pixel that is free of snow. 

An algorithm to retrieve the effective snow grain size, rock fraction, and albedo of a 

mixed snow/rock pixel from satellite data over Antarctica was developed at the Institute 

of Physics of NAS of Belarus and implemented in the form of the ASAR code (Antarctic 

Snow Albedo Retriever). 

The first feature of the ASAR algorithm is to take into account the purity of the snow 

cover in Antarctica. In this modification of the algorithm, the concentration of black car-

bon is assumed to be zero. The second feature is that the rock fraction per pixel is esti-

mated from satellite data. For such a bright surface as snow, the angular dependence of 

reflectance may be significant, because of the anisotropy of the phase function of light 

scattering by snow grains. Since the shape of the snow grain is not known a priori, the 

angular dependence of reflectance cannot be predicted either and therefore it is to be es-

timated from the satellite data as well. This comprises the third feature. Data on the angu-

lar distribution of reflectance by rocks are rather scarce; however, their albedo is quite low 

and the contribution of reflectance from rocks is much lower than that from snow. Thus, 

reflection from rocks are considered to obey Lambert’s law. 

The algorithm does not use any specific snow model or a priori information about 

the shape of snow grains. It uses only the spectral information obtained by a satellite ra-

diometer and is based on the asymptotic dependence of the bidirectional reflectance of a 

semi-infinite snow layer on the particle size [7,8]. 

This implementation of the method, results of which are presented herein, uses the 

MODIS spectroradiometer [15], but a version that processes the OLSI [15] data has also 

been developed. Herein, MODIS channels no. 2, 3 and 5 are used, because rocks reduce 

albedo mainly in the visible range (#3, 469 nm), while snow noticeably absorbs light in the 

near infrared (#5, 1.24 µm). Channel 2 (859 nm) is an additional channel that eliminates 



Proceedings 2022, 69, x FOR PEER REVIEW 4 of 6 
 

 

the uncertainty associated with the angular dependence of the snow brightness. In addi-

tion, none of these channels matches the absorption bands of atmospheric gases, in par-

ticular, ozone. 

3.2. Spatial Distribution of the Snow Grain Size in East and West Antarctica 

MODIS radiometer data are available on the official website of the LAADS (The 

Level-1 and Atmosphere Archive & Distribution System) [17]. The original MODIS data 

files in the HDF4 format, after being converted to the modern HDF5 format, are processed 

by the ASAR software package. As a result of processing, a set of statistical information is 

obtained in the form of maps of various parameters of the underlying surface, such as the 

effective size of snow grains, rock fraction, and average pixel albedo. The retrieved data 

are saved in the HDF5 format and can be used for further processing and analysis. 

Figure 2 show maps of the spatial distribution of snow grain sizes in West and East 

Antarctica, retrieved with the ASAR algorithm from satellite data related to the beginning 

of 2022. The red line on the maps indicates the coastline of Antarctica. Note that in the 

images taken by the Terra satellite, the north is at the bottom of the map, whereas in the 

images taken by the Aqua satellite, it is at the top, because Terra and Aqua move in oppo-

site directions. 

Figure 2 demonstrates significant differences in the state of the snow cover of Ant-

arctica depending on the region. According to Terra data (Figure 2b), the size of snow 

grains in Enderby Land (the area of Molodyozhnaya and Gora Vechernyaya stations) does 

not exceed 100 µm, which corresponds to fresh snow that has not undergone metamor-

phism [18]. On the Antarctic Peninsula (Figure 2a,c), snow grains are much larger, espe-

cially on the western coast of the peninsula, including the location of the Turkish station 

(about 300 µm and above), which indicates significant metamorphism due to melting, 

temperature gradient, or other reasons [18,19]. However, the largest grains (larger than 

400 µm) are observed on the coast of the Prydz Bay (Figure 2b, the Progress station area). 

Such values could have been taken as an “artifact” associated with the data unreliability 

at the edge of the satellite image, however, the data from the MODIS Aqua radiometer 

(Figure 2d) confirm the anomalously high values of the snow grain size in this area. Hence, 

the difference in the effective size of snow grains in these regions during the current Ant-

arctic summer can be considered reliably established. Probably, this difference may be 

due to the ocean influence, which is stronger in the “more maritime” regions of the Ant-

arctic Peninsula and Prydz Bay than in the “more continental” Enderby Land. 
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Figure 2. Maps of the effective grain size: (a) Antarctic Peninsula, Terra, 01/07/2022; (b) East Ant-

arctica, Terra, 01/07/2022; (c) Antarctic Peninsula, Aqua, 01/08/2022; (d) East Antarctica, Aqua, 

01/07/2022. The color scale is in micrometers. 
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