

Proceeding Paper

Study on the Relationship of WSIS of PM_{2.5} with NH₃ and Other Trace Gases over Delhi, India ⁺

Garima Kotnala^{1,2}, Sudhir Kumar Sharma^{1,2,*} and Tuhin Kumar Mandal^{1,2}

- ¹ CSIR-National Physical Laboratory, Dr. K S Krishnan Road, New Delhi 110012, India; garima388@gmail.com (G.K.); tuhin.npl@nic.in (T.K.M.)
- ² Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- * Correspondence: sudhircsir@gmail.com or sudhir.npl@nic.in
- + Presented at 5th International Electronic Conference on Atmospheric Sciences, 16–31 July 2022; Available online: https://ecas2022.sciforum.net/.

Abstract: The water soluble ionic species (WSIS) i.e., NH_{4^+} , $SO_{4^{2^-}}$, NO_{3^-} and Cl^- of PM_{2.5} and trace gases (NH₃, NO, NO₂, SO₂, HNO₃) were measured to study the relationship of ambient NH₃ in the formation of secondary inorganic aerosols in Delhi, India from January 2013–December 2018. During the study period, the average concentrations of NH₃, NO, NO₂, SO₂ and HNO₃ were 19.1 ± 3.8 ppb, 20.8 ± 4.3 ppb, 17.9 ± 4.2 ppb, 2.45 ± 0.47 ppb, 1.11 ± 0.35 ppb, respectively. The concentrations of trace gases were higher during post-monsoon whereas the concentrations of WSIS in PM_{2.5} were estimated higher in winter. The correlation matrix of trace gases reveal that the ambient NH₃ neutralize the acid gases (NO, NO₂ and SO₂) at the monitoring site. Study reveals that the abundance of particulate NH₄⁺ at Delhi to neutralized the SO₄²⁻, NO₃⁻, Cl⁻ particles during all the seasons.

Keywords: PM25; aerosols; carbonaceous species; OC; IGP region

1. Introduction

The formation of secondary aerosols in the atmosphere influenced by reaction rate of NH₃ which depends on the favorable meteorological condition and availability of acid gases in the atmosphere [1,2]. Fine fraction of particulate matter (PM_{2.5}) is considered as one of the major pollutants having a negative impact on atmospheric chemistry [3,4]. Secondary aerosols contribute to a major fraction of PM_{2.5} mass concentration which is mainly formed from NH₃ and its co-pollutants such as NO_x and SO_x [5]. NH₃ as a primary alkaline gas neutralizes the acid gases (HNO₃ and H₂SO₄) and form the secondary particulates (NH₄NO₃ and (NH₄)₂SO₄), which are the major fractions of airborne fine particles [6]. In recent past several studies on temporal and spatial changes of ambient NH₃, NO, NO₂, CO and SO₂ have been carried on short-term basis as well as year-long basis at the urban and sub-urban locations of India [7–11]. However, long-term study on seasonal basis as well gas-to-particle conversion is inadequate in Indian region. In this paper, we reported the annual and seasonal changes of ambient NH₃, NO, NO₂, SO₂ and PM_{2.5} measured for the period of 2013–2018.

2. Materials and Methods

Ambient NH₃, NO, NO₂, and SO₂ were monitored at CSIR-National Physical Laboratory, New Delhi from January, 2013 to December, 2018. 24 h periodic sampling (2 samples/week) of PM_{2.5} was also performed during this period on quartz filters. Ground based analyzers were used to continuous measurement of trace gases (NH₃, NO, NO₂ and SO₂) at 10 m height from the surface level [11]. The estimation of WSICs (Na⁺, NH₄⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, NO₃⁻ and SO₄²⁻) of PM_{2.5} were determined using Ion Chromatograph (DIONEX-ICS-3000, USA) with suppressed conductivity [12].

Academic Editor(s): Anthony Lupo

Published: 14 July 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

3. Results and Discussion

During the study period (2013–2018), the average levels of NH₃, NO, NO₂, SO₂ and HNO₃ were 19.1 ± 3.8 ppb, 20.8 ± 4.3 ppb, 17.9 ± 4.2 ppb, 2.45 ± 0.47 ppb, 1.11 ± 0.35 ppb, respectively whereas the levels of NH₄+, SO₄^{2–}, NO₃[–] and Cl[–] of PM_{2.5} were 9.1 ± 3.5 μ g m^{–3}, 12.3 ± 4.1 μ g m^{–3}, 10.8 ± 4.8 μ g m^{–3} and 9.3 ± 3.2 μ g m^{–3}, respectively. Seasonal mixing ratios of NH₃, other trace gases (NO, NO₂ and SO₂) and concentrations of WSICs of PM_{2.5} are depicted in Tables 1 and 2. The ambient NH₃ indicated significant seasonal variation with highest mixing ratio during post-monsoon season (22.2 ± 3.9 ppb) followed by winter (20.9 ± 4.1 ppb), summer (19.4 ± 4.1 ppb) and monsoon (14.0 ± 2.5 ppb) seasons.

Seasons	NH ₃	NO ₂	NO	SO ₂
Winter	20.9 ± 4.1	17.7 ± 4.5	18.1 ± 4.4	2.24 ± 0.37
Summer	19.4 ± 4.1	19.1 ± 4.3	21.4 ± 5.4	2.25 ± 0.43
Monsoon	14.0 ± 2.5	14.9 ± 3.7	20.4 ± 5.3	2.55 ± 0.26
Post-Monsoon	22.2 ± 3.9	20.0 ± 4.2	23.3 ± 4.5	2.77 ± 0.36
Average	19.1 ± 3.8	17.9 ± 4.2	20.8 ± 4.3	2.45 ± 0.47

Table 1. Seasonal variation in trace gases (in ppb) in Delhi during 2013–2018.

Table 2. Seasonal variation of WSIC of PM2.5 (in µg m⁻³) in Delhi during 2013–2018.

Seasons	PM2.5	Cl-	$SO_{4^{2+}}$	NO ₃ -	\mathbf{NH}_{4^+}
Winter	190 ± 82	15.6 ± 8.9	19.6 ± 6.9	22.7 ± 9.5	17.5 ± 2.8
Summer	92 ± 30	7.5 ± 3.1	8.5 ± 2.2	5.0 ± 2.8	5.8 ± 3.5
Monsoon	86 ± 33	6.2 ± 2.1	9.9 ± 1.9	4.7 ± 2.4	3.9 ± 1.2
Post-Monsoon	171 ± 72	7.8 ± 3.0	11.3 ± 3.4	10.9 ± 3.8	9.3 ± 4.4
Average	135 ± 45	9.3 ± 3.2	12.3 ± 4.1	10.8 ± 4.8	9.1 ± 3.5

The higher concentration of NH₄⁺ during winter season at the observational site of Delhi may be due to high RH, low temperature and higher NH₃ mixing ratio influenced the NH₄⁺ formation [13]. In winter, nitrates availability was significant due to possible reduction in SO₂ oxidation rates in response to lower level of OH radical [14]. A relation-ship of particulate NH₄⁺ with SO₄²⁻, NO₃⁻ and Cl⁻ during all the seasons supports the hypothesis of gas-to-particle conversion. The highest average molar ratio of NH₄⁺ to the SO₄²⁻ during winter (4.86) followed by post-monsoon (4.38), summer (3.61) and monsoon (2.1) seasons indicated the complete neutralization of H₂SO₄, abundance of (NH₄)₂SO₄ and NH₃-rich condition during the winter season [11]. Since NH₃ is the only alkaline gas in the atmosphere with adequate level to neutralize a significant portion of SO₄²⁻, NO₃⁻ and Cl⁻ therefore the aerosol electro-neutrality relationship between NH₄⁺ and SO₄²⁻, NO₃⁻ and Cl⁻ ions can be computed [15].

4. Conclusions

The average levels of all trace gases (NH₃, NO, NO₂ and SO₂) were observed higher during post-monsoon season whereas the mass concentrations of WSICs of PM_{2.5} were higher in winter seasons. The correlation matrix of trace gases demonstrated that the ambient NH₃ neutralize all the acid gases (NO, NO₂ and SO₂) at Delhi during the study period.

Author Contributions: Conception and design of the study were planned by S.K.S.; Data analysis were performed by G.K., S.K.S.; The original first draft was written by G.K. All authors have read and agreed to the published version of the manuscript.

Funding: The authors also acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi (CMM project; CSIR EMPOWER Project: OLP-102132) and Department of Science and Technology, New Delhi (Grant No.: SR/S4/AS:12/2008) for financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets are available with corresponding author and will be provided on reasonable request.

Acknowledgments: Authors express sincere gratitude to the Director, CSIR-NPL, New Delhi-110012, India as well as Academy of Scientific and Innovative Research (AcSIR) for the constant encouragement and support to carry out this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Ianniello, A.; Spataro, F.; Esposito, G.; Allegrini, I.; Hu, M.; Zhu, T. Chemical characteristics of inorganic ammonium salts in PM_{2.5} in the atmosphere of Beijing (China). *Atmos. Chem. Phys.* **2011**, *11*, 10803–10822.
- Meng, Z.Y.; Lin, W.L.; Jiang, X.M.; Yan, P.; Wang, Y.; Zhang, Y.M.; Yu, X.L. Characteristics of atmospheric ammonia over Beijing, China. Atmos. Chem. Phys. 2011, 11, 6139–6151.
- Pant, P.; Harrison, R.M. Critical review of receptor modelling for particulate matter: A case study of India. *Atmos. Environ.* 2012, 49, 1–12.
- 4. Sharma, S.K.; Mukherjee, S.; Choudhary, N.; Rai, A.; Ghosh, A.; Chatterjee, A.; Vijayan, N.; Mandal, T.K. Seasonal variation and sources of carbonaceous species and elements of PM_{2.5} and PM₁₀ over the eastern Himalaya. *Environ. Sci. Pollut. Res.* **2021**, *28*, 51642–51656.
- 5. Singh, N.; Murari, V.; Kumar, M.; Barman, S.C.; Banerjee, T. Fine particulates over South Asia: Review and meta-analysis of PM_{2.5} source apportionment through receptor model. *Environ. Pollut.* **2017**, *223*, 121–136.
- Huang, X.F.; He, L.Y.; Hu, M.; Canagaratna, M.R.; Sun, Y.; Zhang, Q.; Zhu, T.; Xue, L.; Zeng, L.W.; Liu, X.G.; et al. Highly timeresolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. *Atmos. Chem. Phys.* 2010, *10*, 8933–8945.
- 7. Khemani, L.T.; Momin, G.A.; Naik, M.S.; Rao, P.P.; Safai, P.D.; Murty, A.S.R. Influence of alkaline particulates on pH of cloud and rain water in India. *Atmos. Environ.* **1987**, *21*, 1137–1145.
- 8. Parmar, R.S.; Satsangi, G.S.; Lakhani, A.; Srivastava, S.S.; Prakash, S. Simultaneous measurements of ammonia and nitric acid in ambient air at Agra (27°10′ N and 78°05′ E) (India). *Atmos. Environ.* **2001**, *35*, 5979–5988.
- 9. Sharma, S.K.; Datta, A.; Saud, T.; Saxena, M.; Mandal, T.K.; Ahammed, Y.N.; Arya, B.C. Seasonal variability of ambient NH₃, NO, NO₂ and SO₂ over Delhi. *J. Environ. Sci.* **2010**, *22*, 1023–1028.
- 10. Saraswati.; Sharma, S.K.; Mandal, T.K. Five-year measurement of ambient ammonia and its interaction with other trace gases at an urban site of Delhi, India. *Meteo. Atmos. Phys.* **2018**, *130*, 241–257.
- 11. Saraswati.; Sharma, S.K.; Saxena, M.; Mandal, T.K. Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India. *Atmos. Res.* **2019**, *218*, 34–49.
- 12. Sharma, S.K.; Mandal, T.K.; Rohtash.; Kumar, M.; Gupta, N.C.; Pathak, H.; Harit, R.C.; Saxena, M. Measurement of ambient ammonia over the National Capital Region of Delhi, India. *Mapan* **2014**, *29*, 165–173.
- 13. Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. *Chemosphere* **2002**, *49*, 675–684.
- 14. Walker, J.T.; Whitall, D.R.; Robarge, W.; Paerl, H.W. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. *Atmos. Environ.* **2004**, *38*, 1235–1246.
- 15. Behera, S.N.; Sharma, M. Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. *Sci. Total Environ.* **2010**, *408*, 3569–3575.