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Abstract: Modelling the dispersion of atmospheric pollutants plays an important role in regulatory 

and epidemiological settings. Although the majority of modelling concepts were developed in the 

1980s, a significant amount of optimisation and refinement of dispersion models has occurred since 

this time. In addition, some completely novel models such as computational fluid dynamics have 

emerged. Furthermore, next generation models are continually improving the accuracies of the 

results obtained. This review provides a non-technical outline of the mechanisms of atmospheric 

pollutant dispersion modelling and discusses common model types and their applications.  
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1. Introduction 

With the well-established link between various forms of air pollution and 

detrimental health conditions including respiratory conditions (Horne et al. 2018; 

Johannson et al. 2015; Xu et al. 2016), cardiovascular disease (Pope III et al. 2015; Xie et al. 

2015; Zhang et al. 2015), cancer (Chen et al. 2016; Gharibvand et al. 2016) and other 

systemic conditions (Alves et al. 2018; Bernatsky et al. 2016), the importance of 

maintaining air quality has never been more accentuated. Particularly in light of the 

continuing decrease in ambient air quality in regions such as East Asia (Geddes et al. 

2015), the modelling of atmospheric pollutants plays a vitally important role in guiding 

regulatory decisions relating to existing and future air quality (Chalabi et al. 2017; Kumar 

et al. 2016; Sachdeva and Baksi 2017). In addition to providing the ability to predict (i.e. 

forecast) pollutant levels at a given timepoint (Forsyth 2014), pollutant modelling allows 

for specific pollution events to be traced back to their most likely origin (Ling et al. 2017). 

Amongst the numerous potential uses, this is particularly important for regulatory 

decision making or planning (Chalabi et al. 2017; Li and Zhang 2014; Po et al. 2019), 

epidemiological studies (Khreis et al. 2017; Wang et al. 2015) and forensic purposes (i.e. 

identification of the polluter(s) responsible for an observed reduction in air quality) (Ling 

et al. 2017; Squizzato and Masiol 2015; Xin et al. 2016). Air quality monitoring also plays 

in important role in allowing industries to demonstrate their compliance with national air 

quality standards (Godish et al. 2014).  

The choice of pollutant dispersion model plays a key factor in the accuracy of the 

results obtained (Dezzutti et al. 2018). The available modelling techniques were reviewed 

by Daly and Zannetti (2007) over a decade ago, and more recently by Barratt (2013) and 

Colls and Tiwary (2017). In addition, several recent reviews have focussed on the 

modelling techniques specifically associated with traffic-derived atmospheric pollution 

(Forehead and Huynh 2018; Khan et al. 2018). However, the technical jargon associated 

with such reviews may render them unintelligible for the layperson. This review aims to 
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provide a simple introduction to atmospheric pollutant dispersion modelling in 

terminology accessible to the uninitiated and outline the currently available models. 

Particular emphasis is given to models and applications reported over the past five years.  

2. The Basics of Dispersion Modelling 

2.1. Data Input 

The basic inputs of a pollutant dispersion model include the emission source(s) and 

pollutant emission levels, meteorological conditions and any changes, topography and 

any chemical processes (if applicable). A range of possible inputs is given in Table 1.  

Table 1. Some possible data inputs for a dispersion model. 

Emission Characteristics Source Characteristics Location Characteristics 
Meteorological 

Characteristics 

Pollutants 
Source types (e.g. point, line, 

area, volume) 
Location (e.g. urban vs rural) Temperature 

Pollutant characteristics  
Source dimensions (if 

applicable) 
Terrain (simple vs complex) Wind speed 

Distribution of source(s) Volume emission rates Surface roughness (z0) Wind direction 

Emission rates Temperature 
Interfaces of land & water (if 

any) 

Atmospheric 

stability/turbulence 

 Moisture content 
Existing (background) 

pollutant levels 

Solar radiation (particularly 

important for photochemical 

modelling) 

 
Presence of buildings or 

other infrastructure 
 Cloud cover 

   Moisture 

2.2. Data Processing—The “Black Box” 

For many, the model comprises a “black box” wherein the necessary data is entered, 

the start button is pressed and the outputs consequently analysed. Indeed, with the rising 

complexity of the models available, it would be impractical for most users to spend the 

time necessary to gain a complete understanding of the operations of the model they are 

using.  

At the most basic level, atmospheric models comprise one or more mathematical 

formulae that take into account the input parameters to calculate the concentrations of one 

or more pollutants at specific locations at any point downwind or downtime. Clearly, the 

most accurate results would be gained from modelling the trajectory of every pollutant 

molecule over the simulation period. However, this would require an inordinate amount 

of processing power. Rather, models must simulate pollutants as a number of discrete 

components, typically taking either a fixed grid (Eulerian) or trajectory approach. With 

the fixed grid approach, the area in question is divided into a grid; the air quality within 

each grid is calculated at each time point based on its previous air quality and that of 

adjacent grids, taking into account the prevailing meteorological conditions (Godish et al. 

2014). In the simpler trajectory approach, the emissions are chunked into either a single 

block or a number of “puffs”, each comprising a potentially variable (albeit known) 

amount of pollutant (Cécé et al. 2016). The directional and temporal spread of each puff 

is then simulated.  

In order to do this, processing power is divided among a number of modules, each 

connected to the core “dispersion” module. Each module simulates a specific aspect 

within the simulation, such as the identity and concentrations of any pollutants present, 

any chemical reactions, effects of buildings or terrain, effects of meteorology, plume rise, 

and deposition of pollutants. Other modules may be added onto a model. For example, 
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the module PRIME (Plume RIse Model Enhancements) is included in many regulatory 

dispersion models (e.g. ISC, AERMOD, CALPUFF, TAPM, AUSPLUME), allowing for the 

prediction of turbulent flow and mixing induced by buildings.  

Some models (“reactive models”) also allow for chemical reactions between 

components to be simulated. This allows for more realistic prediction of the true 

atmospheric quality, albeit at a higher processor cost. Concentrations of compounds such 

as CO and SO2 are often forecast using non-reactive models due to their relative inertness, 

while the more chemically reactive species NO, NO2 and O3 necessitate the use of reactive 

models (Godish et al. 2014).  

2.3. Data Output 

Although outputs will depend on the specific application to which the model is 

applied, the most important output is typically the predicted concentrations of specific 

pollutants at given point(s) surrounding the emission source, at specified points in time.  

Before being released to the general public, the outputs of a new pollutant dispersion 

model will be calibrated against the true pollutant levels across a number of sites, obtained 

from air quality monitoring stations. Particularly with the rise of cheaper air quality 

monitoring stations which could be implemented more widely (Cavaliere et al. 2018; 

Schneider et al. 2017), the validation of dispersion models, both pre- and post-release, is 

expected to only increase in the future.  

2.4. Data Analysis 

From the data output, an assessment of likely environmental or health effects can 

then be made. Despite its seeming simplicity, accurate interpretation of the model output 

is of the utmost concern. If the model results are not interpreted correctly, then there is 

little point in running the model in the first place.  

2.5. Simulation Timeframe 

Models can either be short-term (hours to days) or long-term (months to years) 

(Godish et al. 2014; Raffee et al. 2018). Short-term modelling is typically used for 

predicting pollutant levels under “worst case” scenarios. On the other hand, long-term 

modelling is often used for epidemiological and atmospheric deposition studies (Godish 

et al. 2014).  

3. Box Models 

3.1. Introduction 

Box modelling is one of the earliest and simplest forms of pollutant dispersion 

modelling. Traditionally, box models found particular use in situations requiring the 

simulation of chemical interactions between pollutants, as the simplified spatial and 

temporal dispersion allowed for a greater focus on the chemical aspects.  

In a box model, the airshed is assumed to be a simple box of set dimensions, with all 

emissions released into the box. Once released, the emissions are assumed to be evenly 

distributed throughout the box. As expected, the accuracy of such a model is quite limited, 

as shown in comparative studies (Gronwald and Chang 2018). The main advantage of the 

box model is its simplicity, thus requiring very little processing power and allowing for 

very fast simulation runtimes. In addition, very little input data are required.  

3.2. Examples of simple box models 

EKMA  

The model EKMA (Empirical Kinematic Modelling Approach) was used as an early 

method of assessing the likelihood of photochemical smog formation in urban settings 

(Carter et al. 1982). In this model, the concentrations of VOCs and NOx were assumed to 
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remain constant from their values measured in the early morning. EKMA is in fact a type 

of Lagrangian simulation, albeit limited to a box model system (Martinez et al. 1983a; 

Martinez et al. 1983b). Despite its age, EKMA is still occasionally used for the study of 

ozone-NOx-VOCs relationships in simple settings (Collet et al. 2018; Luo et al. 2018; Su et 

al. 2018).  

3.3. Uses 

Given their overt simplicity, box models are not commonly used in contemporary 

regulatory settings except for preliminary assessment purposes (Singh 2018). However, 

they do retain a place in pollutant dispersion modelling, particularly in small 

anthropogenic enclosed spaces. For example, Lin et al. (2017) applied a box model to 

investigate the disappearance of formaldehyde from indoor air spaces via 

photodegradation. Given the relatively small air spaces indoors coupled with the frequent 

lack of ventilation to the outdoor environment, the use of a box model is quite appropriate 

in such circumstances. Nevertheless, more complicated models have also been applied to 

the indoor environment (Mocho et al. 2017).  

Modified versions of the box model, such as a two-box model, have been utilised in 

modelling photochemical pollutant levels in street canyons (i.e. a street enclosed by tall 

buildings on each side) (Zhong et al. 2015; Zhong et al. 2016), amongst other uses (Jensen 

et al. 2018). Many other models designed specifically for street canyons are based off the 

box model, albeit typically modelling each street as an individual box. Examples include 

the STREET and STREET-BOX models (Johnson et al. 1973; Mensink and Lewyckyj 2001).  

4. Eulerian Models 

4.1. Introduction 

Eulerian models take a strictly mathematical approach to pollution modelling. The 

area of study is divided into a number of grid cells, both horizontally and vertically, and 

the average pollutant concentration within each cell is calculated at each time point. 

Eulerian dispersion modelling was introduced by Reynolds et al. (1973). Although 

initially used for modelling time periods of only a few days per simulation, more recent 

versions may be used for longer periods of time.  

As Eulerian models are based on the average grid concentrations rather than 

following an entire plume, they easily account for removal of the constituent particles 

through deposition or chemical reactions (Ničeno et al. 2008).  

4.2. Examples 

4.2.1. TAPM 

The Air Pollution Model (TAPM), developed by CSIRO (Hurley et al. 2005), is 

unusual for a dispersion model in that it can use either a Eulerian grid or Lagrangian 

particle model to calculate dispersion (Hurley 2008). The latter is considered to be more 

accurate at locations close to the emission source. Another remarkable aspect is its ability 

to extract meteorological conditions from synoptic charts (past, present or forecast). 

Surface measurements can also be incorporated.  

TAPM functions particularly well in complex situations, such as locations with a sea 

breeze or complex terrain (Matthaios et al. 2018). The incorporated prognostic 

meteorological model has also been used to provide meteorological input data for other 

dispersion models (Bang et al. 2019; Trieu et al. 2015). As expected for a mathematical-

based simulation, TAPM is quite computationally intensive.  

Recent applications of TAPM include use in a complex, mountainous terrain 

(Matthaios et al. 2018), modelling of heavy metal deposition around a copper smelter 

(Pollard et al. 2015) and evaluation of health risks resulting from VOC emissions from 

municipal waste (Sarkhosh et al. 2017).  
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4.2.2. Variable K-Theory Model 

A Eulerian Variable K-Theory model has been found to provide the highest accuracy 

compared to box, Gaussian plume and Lagrangian models, when simulating NO2 and SO2 

concentrations across 17 sites (Gronwald and Chang 2018).  

5. Gaussian Models 

5.1. Introduction 

Based off the assumption that plume spread is due to the diffusion of the constituent 

pollutants, Gaussian models take the pollutant concentrations to follow a normal 

(Gaussian) distribution in both the horizontal and vertical aspects (Godish et al. 2014), as 

determined through experimental measurements of plume spread (Nieuwstadt and van 

Dop 1982). These models have been in regulatory use in the USA for almost 60 years 

(Godish et al. 2014). Gaussian plume models assume the pollutants are emitted at a 

continuous rate, modelling the pollutants as a single, continuous plume (Figure 1). 

Gaussian plumes expand in two dimension over time (y and z). Gaussian plume models 

require the following assumptions: the emission and meteorological conditions must 

remain constant, no chemical transformations occur, and wind speeds always equal or 

exceed 1 m s−1 (Godish et al. 2014). 

Inputs include factors such as the pollutant release rate, release height, wind speed 

(at the reference height; often the height of emissions release), mixing/inversion height, 

and the horizontal and vertical dispersion factors. In addition, rising or sinking of the 

plume may be modelled. When the plume reaches the ground or the upper boundary 

layer of air, it is assumed to reflect quantitatively from these surfaces. Over time, this may 

lead to the false appearance of pollutants accumulating at ground level, which can be 

accounted for in the model (Godish et al. 2014). Further detail surrounding the 

mathematical calculations underlying Gaussian models is presented by Godish et al. 

(2014), hence will not be discussed in detail here.  

 

Figure 1. A representation of a Gaussian plume model. Image by Milton Beychok; reproduced 

under Creative Commons 3.0 licence. 
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5.2. Gaussian Plume Models 

5.2.1. AEOLIUSF 

AEOLIUSF (Assessing the Environmental Of Locations In Urban Streets Full version) 

is designed for modelling dispersion in urban street canyons (Barratt 2013; Buckland 

1998). Compared to other street models, AEOLIUS/AEOLIUSF is not as commonly used 

in contemporary settings. Its accuracy is middle-of-the-range, being higher than STREET 

models but lower than SEUS models (Dezzutti et al. 2018).  

5.2.2. AERMOD 

AERMOD superseded the ISC model as the preferred Gaussian plume model of the 

US EPA (Environmental Protection Agency [EPA] 2019). From the meteorological 

conditions, terrain and upper atmospheric conditions entered, a single wind field is 

calculated and used in the simulation, while the terrain, elevation, surface roughness and 

land use is used to calculate factors such as the turbulence, stability class and Monin-

Obukhov length (a continuous measure of near-surface atmospheric stability) (Daly and 

Zannetti 2007). AERMOD is suitable for ground or elevated sources, and both simple and 

complex terrain (EPA 2019). AERMOD is unsuitable for modelling when the wind speed 

is zero (Goldstone 2015).  

Contemporary applications of AERMOD include assessing complex industrial 

emissions (Gulia et al. 2015), modelling emissions from cement factories (Jayadipraja et al. 

2016; Yazdi et al. 2016) and gas-fired power plants (Singh et al. 2016), and predicting near-

road pollutant levels (Askariyeh et al. 2017). In particular, pollutant sources surrounded 

by complex terrain are often modelled via AERMOD (ul Haq et al. 2019).  

5.2.3. AUSPLUME 

This model is often used in Australia and New Zealand. Its level of detail is believed 

to be a little lower than AERMOD; however, AUSPLUME can be used in modelling 

situations where the wind speed is zero (Goldstone 2015).  

Recent applications of this model include mapping the dispersion of radon released 

from a Romanian uranium mine (Madear et al. 2018) and modelling odour dispersion 

from rubber factories in Malaysia (Idris et al. 2017).  

5.2.4. CALINE3 

CALINE is a modified Gaussian plume model, where the emission source is a line 

rather than a point (Benson 1992). Its main use is in modelling pollutant dispersion from 

roads; the road geometry can be varied rather than being restricted to a straight line. 

CALINE3 remains an EPA-recommended Gaussian line model (EPA 2019), while the 

updated CALINE4 model is also used in some contemporary applications (Majumder 

2019). CALINE3 is designed for relatively simple terrain and forms the basis of models 

such as CAL3QHC and CAL3QHCR (EPA 2019).  

(Majumder 2019) used CALINE4, combined with ISCST3, to predict NO2 and PM10 

concentrations along a road line source.  

5.2.5. CAL3QHC and CAL3QHCR 

Both models are based off CALINE3, but are specifically designed for determining 

the build-up of CO hotspots resulting from traffic stagnation, particularly at intersections 

(EPA 2019). CAL3QHCR is the “refined” version of CAL3QHC and consequently requires 

a greater data input, in particular localised meteorological data (EPA 2019).  

In recent years, CAL3QHC has been applied to the epidemiological study of the 

congenital effects of vehicular pollutants (Beamer et al. 2015) and assessing the spread of 

CO, NOx and VOCs from intersections in India (Dhyani et al. 2019).  

  



Proceedings 2022, 69, x FOR PEER REVIEW 7 of 14 
 

 

5.2.6. CTDMPLUS 

As suggested by its name, Complex Terrain Dispersion Model Plus Algorithms for 

Unstable Situations (CTDMPLUS) is designed for use in complex terrain situations (Perry 

1992). However, it can be used in all stability conditions (including stable and neutral 

conditions) (EPA 2019). From a review of the literature, it does not appear to be commonly 

used in contemporary settings.  

5.2.7. ISC 

The ISC (Industrial Source Complex) model, as reported and evaluated by Bowers et 

al. (1981), was previously the approved Gaussian plume model of the US Environmental 

Protection Agency (EPA) (Daly and Zannetti 2007). Recent applications of the ISC model 

include modelling VOCs downwind of a petrochemical manufacturing plant (Chen et al. 

2015) and monitoring a number of pollutants (CO, VOC, NOx and PM10) in Italian 

agricultural land (Iodice and Senatore 2015a; Iodice and Senatore 2015b). Some authors 

also combine the ISC model with AEROMOD for improved accuracy of the results (Esbrí 

et al. 2015; Roy et al. 2016).  

5.2.8. OCD 

The Offshore and Coastal Dispersion (OCD) model is a straight-line Gaussian model, 

designed for predicting the dispersion of pollutants over marine or coastal regions (EPA 

2019). Changes as the plume crosses the coastline are incorporated (EPA 2019). This model 

has been used across a range of environments, including the Gulf of Mexico (Muriel-

García et al. 2016).  

6. Lagrangian Models 

6.1. Introduction 

Lagrangian models simulate a number of “puffs” of pollutants emitted from the 

source, usually at regular intervals. The most common is a “Gaussian puff” model, where 

each puff is assumed to follow a Gaussian distribution as it moves downwind and 

expands. The puffs are 3D elements that expand in all dimensions (x, y and z) over time, 

concurrently moving downwind from the emission source. A model may comprise 

hundreds to hundreds of thousands of these theoretical puffs (Daly and Zannetti 2007). 

As each puff is treated independently, they can have varying rates of dispersion and move 

in various directions, allowing for more realistic modelling of local conditions within the 

simulation. Another related model of this type is the Lagrangian random walk model, 

where the plume is discretised as numerous independent tracer particles. The particles 

are transported by the mean wind field with local turbulence accounted for using a 

stochastic ‘random walk’ algorithm. In particular, Lagrangian models show improved 

accuracy in models with complex topography or flow patterns (e.g. recirculation of the 

pollutants) and temporal variation in emissions or meteorology. 

Lagrangian models are often used for modelling across longer distances and 

timeframes (up to several years long) (Daly and Zannetti 2007). In contrast, Gaussian 

plume models are typically restricted to predictions up to 50 km from the point source 

(Godish et al. 2014). The field of Lagrangian modelling was introduced by Rodhe (1972); 

Rodhe (1975) and has gathered momentum rapidly since that time.  

Time steps of between 1 and 180 seconds may be used (Inthavong et al. 2016; 

Sachdeva and Baksi 2017). As with Gaussian plume modelling, the assumption of 

complete pollutant reflection from the ground and upper atmospheric boundary layer 

may result in misleading conclusions unless this is taken into account (Boughton et al. 

1987; Monin 1959).  
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6.2. Examples 

6.2.1. AFTOX 

The AFTOX (Air Force Toxic) chemical dispersion model was created by Kunkel 

(1988). It assumes that four Gaussian puffs are released from the source every minute. As 

it does not account for decay or settling of the pollutants, AFTOX often provides higher 

pollutant concentrations and a lower accuracy compared to other model types (Gronwald 

and Chang 2018). AFTOX is restricted to neutrally buoyant gases, but is particularly useful 

for modelling liquid spills which subsequently evaporate (Abbasi et al. 2017).  

AFTOX was recently used as the basis for modelling investigating the relationship 

between raindrop size and the scavenging efficiency of aerosol particles (Elperin et al. 

2016).  

6.2.2. CALPUFF 

CALPUFF is the approved long-range (>80 km) atmospheric emissions model of the 

US EPA (Daly and Zannetti 2007). However, CALPUFF also finds use in short-range 

simulations with complex surface topography (Tomasi et al. 2016), being widely used as 

a regulatory model in Australian and New Zealand. CALPUFF is versatile at both short-

range and long-range simulations (Daly and Zannetti 2007). With more recent software 

such as VISTAS version 6, CALPUFF can be run at timescales of less than one hour 

(Exponent Engineering and Science Consulting 2019).  

Applications include the modelling of odour dispersion (Ç etin Doğruparmak et al. 

2018; Yaacof et al. 2017), dispersion of various pollutants produced by industrial facilities 

(Gulia et al. 2015) and in the study of shipping emissions in a Western Australian port 

(Formentin 2017). One application of particular note was the modelling of atmospheric 

mercury released from a coal-fired power plant in Mexico (García et al. 2017). Numerous 

studies have also utilised CALPUFF in modelling dispersion over complex terrain (Sagan 

et al. 2018; Tomasi et al. 2016).  

6.2.3. Hybrid Eulerian-Lagrangian Dispersion Models (HDMs) 

Hybrid models combining the Eulerian and Lagrangian methods, as outlined by 

Andrén (1990), remain relatively common, particularly for simulating dispersion close to 

point-line sources (Sachdeva and Baksi 2017). The emissions are initially modelled as 

puffs using the Lagrangian method, then after travelling a specified distance or expanding 

to a specified level, the puffs are assumed to approximate a volume emission. The Eulerian 

method then takes over to calculate the long-range pollutant dispersal (Sachdeva and 

Baksi 2017). The major advantage of this method is the reduction in required processing 

power compared to using a Lagrangian model at all scales (Sachdeva and Baksi 2017).  

Hybrid models have been used in complex environments such as complex urban 

(Bahlali et al. 2017) and mixed industrial-residential environments (Bonafé et al. 2018), 

and in combination with CFD modelling to predict PM10 levels (Brusca et al. 2016) and 

other pollutants (Bahlali et al. 2018) in complex scenarios.  

7. Computational Fluid Dynamics Models 

7.1. Introduction 

Computational fluid dynamics (CFD) has been a well-established modelling 

technique in engineering disciplines for many years. However, it is only relatively recently 

that it was turned toward the application of modelling atmospheric pollutants. CFD is 

based off Navier-Stokes equations, which are 3-dimensional, unsteady, non-linear, 

partial-differential equations that can exactly model the flow of atmospheric gases. The 

number of unknowns exceeds the number of discretised equations, hence different 

techniques are used to model unknown turbulence terms to find a solution. A 

Langrangian or Eulerian framework is incorporated into the model in order to calculate 

the transport and dispersion of contaminants through the atmosphere. Depending on the 
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fidelity and resolution of the simulation, CFD models can require very large amounts of 

computing power.  

There are three major classes of CFD models: Reynolds-Averaged Navier Stokes 

(RANS), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).  

7.2. Examples and Uses 

Brown et al. (2013) compared the Quick Urban and Industrial Complex (QUIC) 

dispersion model, based off empirical parameterizations of the flow around and between 

buildings in order to model wind flow in an urban environment. Although the results of 

the model provided a similar accuracy to standard CFD modelling in this instance, the 

advantage of CFD models is that wind flow through novel building configurations and/or 

combinations can be simulated, rather than relying on empirical data.  

Mocho et al. (2017) used a CFD model to investigate the movement of formaldehyde 

in an indoor setting. As expected, the accuracy of the results was improved over a simple 

box model.  

CFD has been used for modelling the near-field dispersion of pollutants, when 

plumes of varying buoyancies were present (Tominaga and Stathopoulos 2018). Other 

uses include the modelling of PM10 movement (Brusca et al. 2016) and the movement of 

reactive chemical components (Sanchez et al. 2016).  

8. Street Network Models 

8.1. Introduction 

The street network model is currently the least utilised contemporary modelling 

technique (Soulhac et al. 2017). This method, designed for the analysis of vehicle emissions 

in built-up urban environments, typically treats each street as a line source of emissions, 

with the quantity of emissions calculated from the traffic volume along that street.  

8.2. Examples 

8.2.1. SIRANE 

The SIRANE model, developed by Soulhac et al. (2011), is specifically designed for 

modelling pollutant dispersal from traffic in urban regions. To date, it is the main street 

network model reported in the literature (Soulhac et al. 2017). Each street is modelled as 

a box, with transfer of pollutants occurring along the box (i.e. along the street), between 

boxes (at street intersections) and between boxes and the atmospheric boundary layer 

(Soulhac et al. 2011). Atmospheric conditions may change hourly, but are assumed to be 

constant in between these timepoints. The model has been validated against wind tunnel 

data (Salem et al. 2015) and against a year of NO2 emissions data (Soulhac et al. 2017). 

However, work by Wang et al. (2016) has suggested that the output of SIRANE shows a 

poor correlation with near-road NO2 concentrations, but better correlation with the 

average NO2 values. Nevertheless, SIRANE has been used in several epidemiological 

studies, particularly in France (Morelli et al. 2016; Ouidir et al. 2015; Padilla et al. 2016).  

Derivative street pollution models have been created based off SIRANE, including 

MUNICH (Model of Urban Network of Intersecting Canyons and Highways), which 

utilises a grid modelling method (Kim et al. 2018).  

9. Other Models 

Specialised models are available for modelling pollutant dispersion over long ranges, 

in complex terrain, and for photochemically reactive pollutants (Godish et al. 2014). One 

example is the Operational Street Pollution Model (OSPM) for modelling the chemistry of 

photochemical smog formation (Hertel et al. 1991; Wang et al. 2016). Other common 

photochemical models include CMAQ (Community Multiscale Air Quality), CAMx 

(Comprehensive Air quality Model with extensions), UAM (Urban Airshed Model® ) and 

CALGRID (Daly and Zannetti 2007). Of particular note are CAMx, an open-source model 
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(Ciarelli et al. 2016), and UAM, the most widely used photochemical air quality model 

(Daly and Zannetti 2007).  

Statistical models are available for the short-term forecasting of air quality, based off 

recent and current air quality measurements (Finzi and Nunnari 2005). Such models do 

not seek to establish cause and effect, rather solely aiming to link patterns in emission 

trends to the air quality (Daly and Zannetti 2007). In a similar fashion, machine-learning 

algorithms have also been trialled for the prediction of O3, NO2 and SO2 concentrations 

(Shaban et al. 2016).  

Due in part to the short lifespan and unique properties of odorous compounds, air 

quality models specifically designed for predicting the dispersion of such compounds are 

available (Daly and Zannetti 2007), such as ModOdor (Liu et al. 2019).  

10. Conclusions 

Atmospheric pollutant dispersion models have played an enormous role in setting 

and regulating atmospheric emission levels and have likely played a vital role in the 

improvement in air quality observed across many westernised countries over the past few 

decades. With new applications and models reported on a weekly basis, the emissions 

modeller is faced with a baffling array of models to choose from. However, a basic 

understanding of the mechanisms behind each model and the strengths and limitations 

of each should assist in guiding this choice. Particularly with advances in computer 

processing power and simulation abilities, the results produced by atmospheric pollutant 

dispersion models are more detailed and accurate than ever before. It is hoped that 

regulatory bodies will be able to utilise this accuracy in such a way that the world’s air 

quality continues to improve over the coming years.  
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