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Abstract: In this study, we investigated the variations in the intensity of the tropical cyclones (TCs) 

formed in the North Atlantic basin from 1982 to 2021, based on the outputs from the Hurricane 

Maximum Potential Intensity (HuMPI) model. To feed HuMPI, we computed the annual Sea Surface 

Temperature (SST) as the SST average from 1 June to 30 November using the Daily Optimum Inter-

polation SST database. The information for all major hurricanes (MHs, category 3+ on the Saffir-

Simpson wind scale) was from the HURDAT2 dataset. While the trend (p < 0.05) in the mean maxi-

mum potential intensity (MPI) was approximately 1.14 m/s per decade for the maximum sustained 

wind speed and −1.57 hPa/decade for the minimum central pressure, the MHs intensity did not 

exhibit any statistically significant trend. The behaviour of the MPI could be explained by the in-

crease (p < 0.05) of the SST at a rate of 0.20 °C/decade. In addition, the increase of the TCs intensity 

in the last 20 seasons (2002–2021) concerning the period 1982–2001 was quite similar for MHs and 

MPI, being an increase of 3.89% and 3.20% for the mean maximum wind speed, respectively. Mean-

while, the minimum central pressure decreased by about 0.36% in both cases. This latter result is 

promising for investigating the changes in the TC intensity in global warming based on the HuMPI 

model. 
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1. Introduction 

Tropical cyclones (TCs) generally provoke casualties and economic losses in tropical 

regions due to the combined effect of strong winds, heavy rainfall, flash flooding, land-

slides and storm surge [1–4]. The population in coastal areas and small islands are often 

the most affected by the impact of TCs. The TCs hazard mainly depends on the number 

of people exposed, their vulnerability [2], intensity and trajectory of the storm. Therefore, 

the accurate prediction of TC track and intensity is crucial for reducing the negative im-

pact of TCs and associated phenomenons [5]. 

According to Knapp et al. [6], approximately 90 TCs globally are formed every year, 

of which ~16.7% occur over the North Atlantic (NATL) basin. Despite the long-term (since 

1851) dataset of TCs records in the NATL basin, the inhomogeneities in the methods to 

observe TCs notably limits the detection of climatic signals in the TC intensities [7]. There-

fore, the influence of the climate change on TC activity is uncertain [2]. 

Some authors [8–12] have investigated trends in TC activity. Klotzbach and Landsea 

[9] found an insignificant upward trend in the proportion of Category 4–5 hurricanes on 
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the Saffir-Simpson wind scale. Kossin et al. [10], using TC records from the ADT-HURSAT 

dataset from 1979 to 2017, revealed a significant trend in the percentage of major hurri-

canes (MHs, Category 3+ on the Saffir-Simpson wind scale). Pérez-Alarcón et al. [11] de-

tected a significant increasing trend in tropical storms but not in TCs with hurricane cate-

gory. Most recently, Klotzbach et al. [12] investigated the global TC trends from 1990 to 

2021, founding a significant decrease in the global number of hurricanes. 

In this study, we aim to investigate the climatological variations in the intensity of 

TCs formed in the NATL basin from 1982 to 2021 thought the Hurricane Maximum Po-

tential Intensity (HuMPI) [13] model simulations. 

2. Data and Methods 

In this work, we only considered the TCs that reached the MH intensity, for which 

MPI is most relevant.. The information on TCs was retrieved from the Atlantic Hurricane 

Database (HURDAT2) [14] developed by the United States National Hurricane Center and 

also hosted in the International Best Track Archive for Climate Stewardship version 4 [15]. 

To compute the TCs’ maximum potential intensity (MPI), we used the HuMPI model 

[13,16]. In addition, the annual average Sea Surface Temperature (SST) extracted from 

June to November from the Daily Optimum Interpolation SST database v2.1 [17] was used 

to feed HuMPI. 

We also averaged the lifetime maximum intensity (LMI; maximum wind speed 

(MHsvmax), and minimum central pressure (MHspmin)) of all MHs every year to investigate 

the annual changes in the mean LMI. Additionally, the annual SST was average in the box 

delimited by 5–30° N in latitude and 10–100° W in longitude, as shown in Figure 1. Simi-

larly, we calculated the mean annual MPI for the potential maximum wind speed 

(MPIvmax) and potential minimum central pressure (MPIpmin). We focused our study in this 

region (5–30° N in latitude and 10–100° W in longitude, red box in Figure 1) based on all 

MHs commonly reached the LMI in this area. 

 

Figure 1. The red box (5–30° N in latitude and 10–100° W in longitude) delimits the area in which 

the annual mean Sea Surface Temperature and the Maximum Potential Intensity were computed. 

3. Results and Discussion 

The average SST in the red box shown in Figure 1 exhibits a significant (p < 0.05) 

increasing trend of 0.20 °C/decade, as revealed in Figure 2. This result agrees with the 

findings of Taboada and Anadón [18], who pointed out an SST rising at a rate of 0.25 

°C/decade from 1982 to 2010; and Pérez-Alarcón et al. [13], who found an upward trend 

of SST of 0.23 °C/decade from 1980 to 2019. Overall, linear trends in the average SST re-

vealed a widespread process of warming during the last four decades in the region of the 

NATL basin, where TCs commonly reach their LMI, in agreement with Taboada and 

Anadón [18]. 
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Figure 2. Annual averaged SST in the red box showed in Figure 1. The red dashed line denotes the 

trend line statically significant at 95%. 

Despite the warming of the NATL basin, the intensity of MHs did not show any sta-

tistically significant trend, as revealed in Figure 3a for the maximum wind speed and Fig-

ure 3b for the minimum central pressure. Nevertheless, the mean potential maximum 

wind speed exhibit an upward trend of 1.14 m/s per decade (Figure 4a) and the potential 

minimum central pressure shows a decreasing trend of 1.57 hPa/decade (Figure 4b). The 

behaviour of the MPI is linked with the SST trend, as the HuMPI model establishes the 

SST as the primary source of energy for the TCs intensification. 

 

Figure 3. Annual averaged of (a) maximum wind speed and (b) minimum central pressure for the 

major hurricanes based on HURDAT2 database. The black dashed line represents the linear trend 

(p > 0.05). The discontinuities in the black solid lines denotes TCs season without major hurricanes. 
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Figure 4. Annual averaged of (a) potential maximum wind speed and (b) potential minimum central 

pressure based on the HuMPI model outputs. The red dashed line represents the linear trend statis-

tically significant at 95%. 

We additionally separated the analysis into two periods of 20 years each (the first 

1982–2001 and the second 2002–2021) and then computed the changes in the mean MHs 

intensity and MPI in the 2002–2021 period concerning the period 1982–2001. Figure 5 

shows the percentage of increment of SST, maximum wind speed and decrease of the 

minimum central pressure. From Figure 5, the SST in the last 20 years is, on average, ap-

proximately 1.85% higher than the mean SST in the period 1982–2001. Interestingly, 

changes in the MHs’ intensity and the MPI are almost similar. The maximum wind speed 

of MHs increased by 3.89%, while the potential maximum wind speed increased by 3.20%. 

For the minimum central pressure, both MHs and MPI, the decrease in the last two dec-

ades accounted for 0.36%. 

 

Figure 5. Changes (in percentage) of the mean Sea Surface Temperature, major hurricanes intensity 

and maximum potential intensity in the period 2002–2021 concerning the period 1982–2001. 
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4. Conclussions 

While the mean intensity of major hurricanes did not show any statistically signifi-

cant trend in the North Atlantic basin, the maximum potential intensity from HuMPI 

model outputs revealed an increasing trend in the maximum wind speed of 1.14 m/s per 

decade and a downward trend in the minimum central pressure or 1.57 hPa/decade. In 

addition, the mean maximum wind speed in the period 2002–2021 has increased by 3.89% 

for MHs and 3.20% for MPI concerning the period 1982–2001. Our results are promising 

to investigate the changes in the intensity of tropical cyclones due to global warming. 
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