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Abstract: Tropical cyclones are extreme hydrometeorological events whose impact causes human, 

material and economic losses. The inaccuracies in the forecast of the trajectory of these phenomena 

often lead to inefficient decisions, such as unnecessary evacuation. This research proposes the 

combination of the three forecasting tools NTHF, SisPI and SPNOA in the generation of ensemble 

prediction systems, with the aim of improving the track forecasts of tropical cyclones. Three variants 

were used for the construction of time-lagged ensembles, and for their evaluation the best track and 

historical errors (2016-2020) of the National Hurricane Center (NHC) were used. The ensembles lead 

to an improvement in tropical cyclone track forecasts. Position errors vary from case to case, but 

ensembles generally tend to be more accurate than independent forecasts. Compared to the 

historical errors of the NHC, the results obtained are promising because they are superior in some 

cases. 
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1. Introduction 

Cuba is hit by extreme weather events, with tropical cyclones (TCs) being the most 

closely watched due to their frequency and destructive potential. That is why the forecast 

of TCs constitutes a task of importance and these are carried out on the basis of operational 

numerical models [1]. 

Despite the improvement achieved, numerical weather prediction models are still far 

from perfect and continue to fail in some important weather situations. In recent decades, 

new techniques have been incorporated to reduce the limitations and uncertainties of the 

models, Ensemble Prediction Systems (EPSs) are a very powerful tool that allow 

overcoming some of these. EPSs attempt to sample the most important sources of error 

that deterministic numerical prediction models may suffer. By simulating these errors, 

they offer explicit and detailed information on the uncertainty of a weather forecast, as 

well as the most likely outcome of the predicted process [2] . 

Several have been the authors who have carried out studies at the international level 

to improve the track forecasts of TCs from EPSs. Zhang and Krishnamurti [3, 4] used a 

perturbation method based on empirical orthogonal functions and applied this technique 

to a global spectral model. Goerss [5] and Lee and Leung [6] evaluated the performance 

of the multi-model technique, the sets proposed in both investigations were determined 

simply by averaging the forecast positions of the models used. Other investigations 

carried out showed superior results to the simple multi-model technique. For example, 

Kotal and Roy [7] and Jun [8] presented an unequal weighting technique applying the 

multiple linear regression and partial least squares regression techniques, respectively. 

Nishimura and Yamaguchi [9] applied a selective ensemble mean technique that excluded 

from the set of eleven models those that presented large position errors in short times. 
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These investigations have shown that the resulting forecasts are, on average, significantly 

better than the individual forecasts of the models. 

In Cuba this topic has not been addressed. Hence, it is considered necessary to 

propose the following research to achieve a forecast that is capable of reflecting reality as 

much as possible. The generation of EPSs is proposed from the combination of TC track 

forecasts from the Numerical Tools for Hurricane Forecast (NTHF), Short range Prediction 

System (SisPI) and Numeric Ocean-Atmosphere Forecasting System (SPNOA) systems. 

Three variants were used for the construction of time-lagged ensembles, and for their 

evaluation the best track and historical errors (2016-2020) of the National Hurricane 

Center (NHC) were used.  

2. Methods 

2.1. Operating systems in Cuba for forecasting tropical cyclones 

At Institute of Meteorology (INSMET), the numerical prediction of TCs is carried out 

through two configurations derived from the Weather Research and Forecasting-

Advanced Research Weather (WRF-ARW) model named SisPI and SPNOA. The SisPI's 

main objectives are the numerical forecast of meteorological events on a local scale and 

the quantitative forecast of precipitation. It has four daily initializations (0000, 0600, 1200 

and 1800 UTC) of its forecast with a three-hourly update of lateral boundary conditions 

[10]. The SPNOA's fundamental objectives are the numerical forecast of TCs and the 

forecast of the state of the ocean in the inter-American seas and Cuban waters. It has two 

daily initializations (0000 and 1200 UTC) of its forecast with a three-hour update of lateral 

boundary conditions [11, 12]. 

Another forecasting system used in the prediction of these meteorological 

phenomena in Cuba is NTHF, which has been implemented and is operational in the 

Department of Meteorology of the Higher Institute of Applied Technologies and Sciences 

(InSTEC) of the University of Havana. It has two daily initializations (0000 and 1200 UTC) 

of its forecast with an update of lateral boundary conditions every 6 hours [13, 14, 15]. 

2.2. Ensemble members 

It is intended to use all available initializations of the forecast tools NTHF, SisPI and 

SPNOA. The three systems are obtained from configurations derived from the WRF 

model, but each one of them presents different physics, domains, resolutions and 

parameterizations, which indicates that multi-physics and multi-parameter techniques 

are applied to combine the members. 

In order to increase the number of members of the set, the time-lagged technique is 

also applied. The time-lagged technique is nothing more than a combination of the current 

forecast with previous forecasts [16]. 

A schematic representation is shown in Figure 1, where four daily runs with 

initialization 0000, 0600, 1200 and 1800 UTC can be viewed, with the 0000 UTC run being 

the most updated. If m00, m06, m12 and m18 are denoted as the members of a set defined 

by the runs of 0000, 0600, 1200 and 1800 UTC respectively, then given the scheme, for the 

first 54 hours of forecast of m00, it is also counted with the forecast of the 60, 66 and 72 

hours of the members m18, m12 and m06, that is, the set is made up of four members for 

that range of hours. 

 

Figure 1. Scheme that exemplifies the ensemble prediction method based on initializations with 

different runs. 
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Once the members were defines, three variants were used to combine them and obtain the 

ensembles: mean, weighted mean and selective mean. 

2.3. Study cases 

The case studies selected for this research are presented in Table 1. For the evaluation 

of the three tools, all the available initializations of the seven TCs were used, but for the 

construction of the EPSs only the Irma and Eta systems were chosen by two aspects: they 

are TCs that affected Cuban territory in recent years and existence of sufficient 

information from the three forecast systems for the construction of the EPSs. 

Table 1. Case studies used in the research. 

Irma (September 2017) Fred (August 2021) 

Laura (August 2020) Grace (August 2021) 

Eta (November 2020) Ida (August 2021) 

Elsa (July 2021)  

3. Results and discussion 

3.1. Evaluation of the forecasting tools NTHF, SisPI and SPNOA 

To carry out a general evaluation of the performance of the three systems in the track 

forecast, all the available initializations of the TCs represented in Table 1 were used. The 

distances (in km) at which the predicted trajectories are found with respect to the NHC 

best track were calculated for different time periods. 

Table 2 shows a comparison between the results obtained from the evaluations of the 

three systems and the mean forecast errors of the NHC for the years 2016-2020. It can be 

seen that the ability of NTHF is high, especially for periods of up to 48 hours, however, 

discrete results are obtained for longer periods. In the case of the SisPI, the forecasts are 

effective in the first 12 hours, while for other periods the errors grow notably. This is due 

to, among other reasons, the fact that this system was not properly designed for this type 

of forecast. In the results of these two tools, it is possible to observe the tendency of 

forecast errors to grow with time periods, a situation that does not occur with the SPNOA, 

since it shows a decrease after 36 hours, the cause of this behavior is not known, but it is 

consistent with other evaluations carried out by the developers of the SPNOA [12]. In 

summary, for the first 12 hours the best results are reported by the NTHF and SisPI, 

between 24 and 48 hours the forecasts of the NTHF and SPNOA are more precise and for 

longer periods those of SPNOA are the most effective. The superior performance of the 

NTHF is to be expected since it was built especially for TC forecasting and tracking. In 

addition, it incorporates the vortex tracking technique, which guarantees that the interior 

domain is always centered on the TC in such a way that it better reproduces its movement 

and physical-dynamic characteristics. 

Table 2. Position errors (km) in the track forecast of the NTHF, SisPI and SPNOA systems. 

 0 h 12 h 24 h 36 h 48 h 60 h 72 h 

NHC 11.59 38.14 58.26 78.86 102.68 134.86 151.60 

NTHF 15.82 66.56 83.40 111.86 142.450 221.11 328.16 

SisPI 44.60 54.08 140.50 190.90 231.69 297.05 337.83 

SPNOA 40.35 122.87 133.07 150.63 149.88 175.14 235.81 

 

For the construction of the weighted mean ensemble, it was necessary to generate 

different weights to be assigned to each of the members and for this the general evaluation 

carried out was used. 
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In Table 3 it can be seen that the weights vary according to the performance of each 

tool in the trajectory forecast. Initially NTHF and SisPI are the ones with the greatest 

weight and this is due to the fact that in the first 12 hours they report more accurate 

forecasts, for time periods between 24 and 48 hours the NTHF and SPNOA predictions 

have greater value and finally the SPNOA forecasts are the most effective for that reason 

are attributed greater weights. 

Table 3. Weights for the corresponding members of the NTHF, SisPI and SPNOA. 

 0 h 12 h 24 h 36 h 48 h 60 h 72 h 

NTHF 0.99 0.97 0.97 0.95 0.94 0.91 0.87 

SisPI 0.98 0.98 0.94 0.92 0.91 0.88 0.86 

SPNOA 0.98 0.95 0.95 0.94 0.94 0.93 0.90 

 

A more specific evaluation was also carried out by initializing the forecast systems 

used. The tables show the results obtained. 

From Table 4 it can be seen that NTHF 0000 UTC initializations tend to be more 

effective than 1200 UTC. Table 5 shows that for the first 12 hours the initializations at 1200 

and 1800 UTC present fewer errors, but the same does not happen for longer periods 

where 0000 and 0600 UTC stand out. In Table 6 it can be seen that the SPNOA 0000 UTC 

initializations are much more accurate than those of 1200 UTC. In general, it can be 

summarized that for the initialization of 0000 UTC, the NTHF presents a superior 

behavior to the other two tools in the first 12 hours, but in longer periods, the SPNOA 

presents fewer errors. On the other hand, in the first 48 hours of the initialization of 1200 

UTC, the NTHF forecasts with less error, and again for the other timeframes the SPNOA 

has more accuracy. 

Table 4. Position errors (km) in the track forecast of the two NTHF initializations. 

Initialization 0 h 12 h 24 h 36 h 48 h 60 h 72 h 

0000 UTC 15.21 51.45 73.11 111.30 140.06 224.07 320.15 

1200 UTC 18.49 68.37 101.15 126.71 162.67 231.05 330.65 

Table 5. Position errors (km) in the track forecast of the four SisPI initializations. 

Initialization 0 h 12 h 24 h 36 h 48 h 60 h 72 h 

0000 UTC 44.38 53.28 100.80 186.51 199.36 238.17 305.23 

0600 UTC 58.10 58.79 114.43 169.15 219.45 264.54 303.79 

1200 UTC 38.34 51.24 132.08 158.08 201.85 295.81 347.09 

1800 UTC 37.99 53.18 209.67 247.86 298.13 388.37 396.58 

Table 6. Position errors (km) in the track forecast of the two SPNOA initializations. 

Initialization 0 h 12 h 24 h 36 h 48 h 60 h 72 h 

0000 UTC 43.96 62.35 67.19 92.87 124.44 163.01 211.17 

1200 UTC 36.40 181.71 198.95 210.18 178.16 190.66 264.94 

 

This evaluation was carried out with the aim of obtaining the members used in the 

construction of the third ensemble. A schematic representation is shown in Figure 2, 

where the elements that make up the members can be viewed when the NTHF, SisPI and 

SPNOA initializations are available. Members m06 and m18 will be those of the SisPI as 

it is the only tool that has runs at these times and members m00 and m12 will be a 

combination depending on the behavior of the systems by section. 
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Figure 2. Members used in the construction of the selective set when the initializations of 

the NTHF, SisPI and SPNOA are available. 

3.2. Performance of the proposed ensemble prediction systems 

3.2.1. Tropical Cyclone Irma 

Irma affected Cuba as a hurricane on September 8 and 9, 2017. The three ensembles 

proposed for September 9 at 0000 UTC were built. According to the best track, on 

September 9 at 0000 UTC, Hurricane Irma was at north of Nuevitas and then moved west-

northwest, bordering the north coast from Camagüey to Matanzas, throughout the 9th. 

The following day, the system began to move north, in direction of the Florida peninsula. 

In Figure 3 (a) it can be seen that in the first 24 hours of the forecast, most of the 

employed members had a very similar behavior among themselves and even closely 

resembled the best track. After 24 hours, the trajectories began to diverge. Most predicted 

a slower moving hurricane, but it stayed on the same track, moving first west-northwest 

and then north. 

Figure 3 (b) represents a comparison between the three ensemble forecasts obtained 

and the best track. It can be seen that in the first 18 hours of the forecast, the behavior of 

the groups is very similar to the official trajectory of Irma, but for longer periods they 

move away a little. Again, the results incorrectly predicted Irma's translational speed, but 

matched the system's heading. 

  

(a) (b) 

Figure 3. Tropical Cyclone Irma: Initializations corresponding to 09/09/2017 at 0000 UTC 

(a) Employed Members; (b) Obtained ensembles. 

In order to have a better representation of the results obtained, the distances (km) at 

which the trajectories obtained are found with respect to the best track were calculated. 

Table 7 shows the ensemble errors and historical NHC error over the years 2016-2020 and 

the official NHC errors for the Irma forecast. It can be seen that all three ensembles were 

accurate, although in the first 36 hours the second and first ensembles reported smaller 

errors and then the results of the third ensemble were more effective. This situation is due 

to the fact that initially the employed members have a greater consensus and that is why 

the mean and the weighted mean report more accurate forecasts, but later the members 
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begin to disagree and it is then that the selective mean excels in the forecast. Compared to 

the NHC, it can be seen that the mean and weighted mean ensembles were accurate 

throughout the forecast period, while the selective mean ensemble initially forecasts with 

less accuracy but after 12 hours reports significantly lower errors. This is explained 

because, in this case, the members used in the ensembles had greater skill than the NHC 

forecasts, hence the decrease in errors in the ensembles.  

Table 7. Position errors (km) in the track forecast of the sets obtained for 09/09/2017 at 0000 

UTC. 

 Mean Weighted 

mean 

Selective 

mean 

NHC     

(Irma) 

NHC     

(2016-2020) 

0 h 8.48 8.89 21.36 - 11.59 

12 h 35.72 35.55 44.75 23.82 38.14 

24 h 51.51 51.29 53.85 41.04 58.26 

36 h 51.79 51.64 53.78 60.51 78.86 

48 h 34.50 33.86 30.39 81.27 102.68 

 

3.2.2. Tropical Cyclone Eta 

Eta affected Cuba as a tropical storm on November 8 and 10, 2020. The three 

ensembles proposed for November 9 at 1200 UTC were built. According to the best track, 

on November 9 at 1200 UTC, tropical storm Eta was located west of the Florida peninsula. 

It then moved southwest until 0600 UTC on November 10. That same day, the system 

made a cyclonic loop and on the 11th it began a movement towards the north. 

Note, in Figure 4 (a), that not all members predicted the cyclonic loop and some of 

those who did predict it elsewhere. After the loop, all members forecast a slower 

movement of the cyclone. Another detail was that many members failed to forecast the 

northerly course that the system assumed when the loop ended, most forecasting a 

northwestward motion. In general, it can be said that, in the case of Eta, in this section of 

its life cycle, the consensus among the members was lower, compared to the case 

previously studied. 

In Figure 4 (b) it can be seen that in the first 6 hours, the ensemble forecasts resemble 

the best track. The three trace the cyclonic loop, although not exactly in the same place, 

they are a little closer to Pinar del Río. After the loop, all three ensembles forecast a slow 

northward movement of the cyclone. 

 
 

(a) (b) 

Figure 4. Tropical Cyclone Irma: Initializations corresponding to 09/11/20220 at 1200 UTC 

(a) Employed Members; (b) Obtained ensembles. 
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From Table 8 it can be identified that the weighted mean and the mean performed 

very well up to 36 hours, but in longer terms the errors grew considerably. Compared to 

the historical errors of the NHC, it can be seen that in the first 36 hours the sets performed 

very well, being more effective. 

Table 8. Position errors (km) in the track forecast of the sets obtained for 11/09/2020 at 1200 

UTC. 

 Mean Weighted 

mean 

Selective 

mean 

NHC     

(Irma) 

NHC     

(2016-2020) 

0 h 16.76 16.62 21.77 - 11.59 

12 h 42.93 42.70 54.09 40.56 38.14 

24 h 71.73 70.37 85.55 67.91 58.26 

36 h 45.88 45.24 63.98 103.48 78.86 

48 h 133.26 135.22 136.58 146.45 102.68 

 

4. Conclusions 

In the present investigation, three alternatives were implemented to improve the 

forecast of the trajectory of TCs from the combination of the NTHF, SisPI and SPNOA 

tools. The analysis of the results led to the following conclusions: 

1. The evaluation of the NTHF, the SisPI and the SPNOA, for the cases studied, showed 

that in the first 48 hours the NTHF tends to be more precise, but in longer periods the 

SPNOA stands out.  

2. The mean and weighted mean variants were the ones that reported the least errors 

in the initial terms and in the last forecast hours, the selective mean stands out. This 

is due to that in the first hours there was a greater consensus among the employed 

members, and for this reason the mean and weighted mean are more effective. With 

increasing uncertainty over time, members begin to disagree, and so the selective 

mean is more accurate. 

3. The degree of improvement of ensembles varies from case to case, but in general they 

tend to be more accurate than independent forecasts. Regarding the historical errors 

of the NHC, it can be concluded that the results are promising because they are better 

in some cases. 
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