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Abstract  

The protein-protein interaction network (PPIN) is essential for 

functional processing and mechanism of multiple complex 

diseases. Recently, control theory has applied to protein 

interaction with the aims of identify the minimum set of nodes 

that can drive the whole network to the desired state. Here, we 

use different statistic network inference methods to generate the 

highest-scored re-ranking gene list as the source for 

constructing protein-protein interaction network. Then we 

characterize structural controllability of directed and weighted 

PPINs for breast cancer stages. The maximum matching 

approach for controllability analysis allows classifying nodes 
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into three categories: critical, intermittent and redundant. This 

leads to identifying the most important proteins as critical nodes 

for each stage of breast cancer. In total, 70 critical nodes as 

drug targets have been revealed across stages in this study. 

 

Introduction 

Breast cancer is the most common type of cancer and it remains the primary cause of death in the women 

population. 1.67 million new breast cancer cases were diagnosed in 2012 that accounts for 25% cancer 

cases in women (Akram et al. 2017). Breast cancer is a complicated disease because of its heterogeneity 

with the contribution of many risk factors such as sex, ageing, estrogen, family history, gene mutations 

and unhealthy lifestyle (Y. S. Sun et al. 2017). 

Among the many therapeutic options, the use of small molecules that modulates cancer-related 

protein/gene targets remains as one of the leading anticancer approaches (Hoelder, Clarke, and Workman 

2012). Specifically, the telomerase enzyme has become an attractive target for new and more effective 

anticancer agents (Mengual Gomez et al. 2016). This is a reverse transcriptase responsible for the 

addition of a repetitive DNA sequence to the ends of linear eukaryotic chromosomes, and so, involved 

in the phenomenon of cellular immortalization (Feng et al. n.d.; Riou et al. 2002). This enzyme is active 

in more than 85% of tumor cells, but is not active in the majority of normal cells, with some notable 

exceptions such as stem cells and germ line cells. Telomerase is therefore a promising target for the 

treatment of malignancies (Sprouse, Steding, and Herbert 2012). 

Assessing breast cancer mechanisms by means of cross-disciplinary bioinformatics would become 

rapidly developing. Hence, to identify breast cancer-related genes and significant genes for prognosis 

and treatment, many bioinformatics pipelines for data analysis have been investigated. However, 

ineffectiveness of current drug therapy illustrates the compensation of cancer cells to drug inhibition by 

multiple pathways. For this, cancer genes need to be represented as a part of a network where each 

interaction could affect the disease (Emmert-Streib et al. 2014). 

On the other hand, the extremely large size of cancer networks makes it nearly impossible to access all 

the interactomes. For example, a cancer human network representing the cancer genes and their 

connection to 1st neighbor contains 3068 nodes and 6572 edges (Ibrahim et al. 2011). Thus, the reduction 

of network size by prioritizing genes is necessary. Differentially expressed genes (DEG) analysis is one 

of the most common applications to prioritizes genes using RNA-sequencing (RNA-seq) data. The 

concept of DEG is to identify the genes with expression levels determined to be significantly 

differentially expressed across two experimental conditions (e.g. cancer versus normal). The significance 

of difference needs to be evaluated by a statistical test and mostly ANOVA, t-test. Nevertheless, data of 

microarray experiments is not always satisfactory to statistical test. The sample size of normal cases is 

frequently much less than tumor cases leading to violation of assumptions of statistical tests. Therefore, 

Bourdakou et al have proposed a protocol for revealing essential genes by multiple network inference 

strategies coupled with PageRank algorithm (Bourdakou, Athanasiadis, and Spyrou 2016). PageRank 

reconciles co-expression network which is interfered by a variety of mathematical algorithms and 

biological methods to re-rank all genes (Poirel et al. 2013). As a result, the top genes obtained from the 

re-ranked list were used as seed proteins to build up the protein-protein interaction network (PPIN). 

PPIN describes the physical interactions between proteins in genome-wide scale. It provides a directed 

and weighted network which helps us understand human signaling circuitry. Recently, control theory 

https://mol2net-08.sciforum.net/


MOL2NET, 2022, 8, ISSN: 2624-5078                                                                                     3 

https://mol2net-08.sciforum.net/          

 

has emerged as a mathematical framework for understanding how best to control a dynamical system 

(Uhart, Flores, and Bustos 2016). A system considers controllable when the minimum number of input, 

termed as “driver” nodes, can drive the system from any initial state to any desired final state in a finite 

time (Y. Y. Liu, Slotine, and Barabási 2011). Furthermore, each node in network has been classified into 

three categories: (i) critical if in its absence more driver nodes are controlled to drive the network; (ii) 

intermittent if in its absence there is no change in driver nodes; (iii) redundant if in its absence fewer 

driver node can offer full control the network (Y. Y. Liu, Slotine, and Barabási 2011). In this study, we 

exploited microarray data from Gene Expression Omnibus (GEO) database (Edgar, Domrachev, and 

Lash 2002) and The Cancer Genome Atlas (TCGA) database (http://gdac.broadinstitute.org/) for co-

expression network inference of telomere related genes per each stage of breast cancer, prioritizing 

significant genes by Page rank algorithm. To elucidate the impact of top 100 genes from each gene list 

over sample discrimination, we carried out a validation scheme using the data from GEO as test sets and 

TCGA data as train sets. Afterwards, the gene list from this method was employed to construct protein-

protein interaction networks. Here we explore the role of each individual node by classifying each node 

into three categories: critical, intermittent and redundant in the established model by maximum matching 

method. Finally, we obtained a list of potential drug targets for each stage of breast cancer. 

Materials and Methods 

With the input of telomere genes list, different algorithms and methods were applied to finally 

reconstruct an either mathematical or real gene interaction network. In total, there are 42 network 

inference algorithms. All genes in the network were re-ranked by PageRank algorithm to select top 100 

genes of each method. Finally, the validation scheme to classify normal and cancer sample using the 

data from GEO as test sets and TCGA data as train sets applied to score the quality of each prioritized 

gene list. Genes of the highest score ranked list were used as seed proteins to build up the PPIN of each 

stage. 

Results and Discussion 

Results 

Evaluation of gene re-ranking 

We obtained 43 ranked gene lists from re-ranking methods along with traditional DEG ranking. To 

validate each approach, we applied a holdout validation scheme and calculated the mean classification 

accuracy for each method per stage. The median accuracy values of all methods are greater than 60% in 

stage I, 55% in stage II, 50% in stage III and 80% in stage IV (Fig 1). Aracnea.bsN3, clr.bsN3 and 

WGCNA have the least standard deviations throughout four stages. 

Based on the maximum achieved mean classification accuracy across datasets, we calculated a score for 

each method. Table V indicates the score of each re-ranking method for all stages. It is observed that 

mean scores of ranking methods varied mostly from 0.6 to 0.9. In addition, these scores across four 

stages are comparable, low standard deviations are shown in most methods except aracnem.bsN3 

algorithm. 

The highest average score for breast cancer stage was achieved by Adlasso network inference algorithm 

with an average score of 0.9025 in which 0.81, 0.9, 0.9 and 1 are respectively scores of stage I, II, III 

and IV. After Adlasso, Initial method is the second-highest average score with the score 0.9 for all stages. 

The lowest average score is of aracnem.bsN3 method. Therefore, we chose the rank list from Adlasso 

network inference method to construct the protein-protein interaction network.  
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The mean accuracy rates of Adlasso throughout the top 100 genes. The mean accuracy of Adlasso 

remains mostly stable for about the first 14 genes at the highest score value, after that, the accuracy 

varies from 0.6 to 0.9 except stage IV. The accuracy of stage IV mostly fluctuated around 1. It 

reconfirmed that the Adlasso method is suitable for re-ranking genes. 

 

 

 

 

 

Figure 1. Boxplots of mean accuracy rates of the top 100 sequential genes of all re-ranked gene 

lists for breast cancer stages. The accuracy value is ranged from 0 to 1, shown on y axis. The x axis indicates 

different methods corresponding with different colors. Dots represent outlying value in each method. 

Controllability analysis of weighted and directed biological network 

First, we constructed four PPINs consisting of 76 nodes and 177 edges in stage I, 81 nodes and 181 

edges in stage II, 78 nodes and 196 edges in stage III, 71 nodes and 183 edges in stage IV. We applied 

algorithms: maximum matching (MM) to classify the nodes into three types of nodes (critical, 

intermittent, redundant). The PPIN network of stage I illustrates in Figure 2. In general, most of the 

nodes identified was redundant node and 70 critical nodes were classified in total. The number of critical 

nodes of each stage, respectively are 16, 20,12 and 21. Interestingly, it is observed that the highest-
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degree nodes of stage I, stage II, stage III and stage IV with 18, 21, 20, 19 degrees respectively are 

redundant nodes. Furthermore, 40% in total critical nodes have degrees of 1 and only 6% have the degree 

that is greater than 10. 

Overall, our aim was to identify which nodes are of importance in controlling the network. Clearly 

critical nodes are the most important in controlling the network and become potential drug targets. The 

list of all critical nodes of breast cancer stage achieved by MM method is shown in Table I. 

 

Figure 2: Protein-protein interaction network of stage I breast cancer by MM. The degree of a node 

which is the number of connections that it has to other nodes in the network is illustrated by the different size of the circle. 

The critical, intermittent and redundant nodes are displayed in red, green and blue, respectively.  The different widths of the 

arrow represent different weights. 

Table I: Critical nodes breast cancer stages 

Stage 1 Stage 2 Stage 3 Stage 4 

CSNK2A1 EXOSC10 C9orf78 BICD1 

TGFBR2 ATRX TFIP11 INHBA 

SMG5 PTGES3 MAP2K6 BARD1 

C9orf78 C9orf78 GADD45B CIB1 

HMGB1 POLD4 TSN EP300 

LIG4 HMGB1 APEX1 CCT4 

UBE2B MAP2K6 CTSB RPA1 

HAT1 CKAP4 LPL LIG4 

APEX1 RPA2 PAPSS1 CKAP4 

HMOX1 GADD45B TNKS TELO2 

LPL UBE2B RAD9A UPF1 

RAD21 XRN1 PPP1R10 UBE2B 

MAPK3 CTSB MAPK3 CTSB 

SMG6 LPL  SF3B1 

F8A1 RAD21  RAD21 

MAPK15 XRCC1  RAP1A 

 TNKS  LEP 

 MAPK3  ALDH1B1 

 BRCA2  DCLRE1B 

 SMG1  PTGS2 

   F8A1 

Discussion 
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In this work, we used 43 network inference methods to reconstruct the co-expression network and 

prioritize genes to identify the significant gene in different breast cancer stages (I-IV). The result 

demonstrated that the gene list of Adaptive lasso, a correlation-based method, achieved the highest score. 

However, the simple statistical method (Initial) also got a high score, after Adaptive Lasso. Actually, it 

has been observed that the simple statistical gave slightly better score compared to other methods in the 

case of breast cancer stage genes. However, in case of molecular subtypes, it showed that re-ranking 

methods improved both score and accuracy (Bourdakou, Athanasiadis, and Spyrou 2016).  Raeisi 

Shahraki et al. (2016) applied Adaptive Lasso to identify the most efficient genes from the data of 25 

patients with bladder cancers, too (Shahraki et al. 2016). 

The controllability analysis to assess critical nodes in complex biology network has become a trend in 

computational biology. Recently, MM has been proposed as a method to identify driver nodes in a 

directed network (Vinayagam et al. 2016). Liu and Pan studied controllability of human signaling 

network, they also applied MM methods to classify driver nodes into three categories critical, 

intermittent and redundant with the fraction 30.32, 30.24 and 39.44 percent respectively (X. Liu and Pan 

2015). 

Gol et al found that the essential human gene tends to encode hub protein (high-degree node in network) 

(Goh et al. 2007) and through investigation of topology feature, they concluded that cancer protein likely 

to have more degrees (J. Sun and Zhao 2010).  However, in our study, possessing a high degree might 

not guarantee a critical node.  In the study of controllability of human immunodeficiency virus type 1 

(HIV) network, the result has shown that the critical nodes identified by MM tend to be peripheral in 

network due to their low in-degree value (Vinayagam et al. 2016).  The study conducted by Liu and Pan 

about the controllability of human signaling network also concluded that critical driver nodes tend to 

have low in-degrees (X. Liu and Pan 2015). 

Conclusions 

In conclusion, using control theory to analyze complex networks in the context of breast cancer has 

proved to be a useful tool for biology system research. Besides that, re-ranking methods have 

successfully reduced the amount of our workload when using the genes in the highest score list as seed 

proteins for protein-protein interaction network. We hope that our result can suggest fundamental insight 

on various genes related breast cancer players hidden inside. In the near future, virtual screening to 

develop potential drug candidates on the list of drug targets is perfectly possible. 
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