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Abstract: Induction motors operate in difficult environments in the industry. Monitoring the per-

formance of motors in such circumstances is significant which can provide a reliable operation sys-

tem. This paper intends to develop a new model for fault diagnosis based on the knowledge of 

transfer learning using the ImageNet dataset. The development of this framework provides a novel 

technique for the diagnosis of single and multiple induction motor faults. A transfer learning model 

based on a VGG-19 convolutional neural network (CNN) is implemented, which provides a quick 

and fast training process with a higher accuracy. Thermal images with different induction motor 

conditions are captured with the help of flir camera and applied as inputs to investigate the pro-

posed model. The implementation of this task is to use VGG19 (CNN) based pre-trained network 

which gives autonomous features learning based on minimum human intervention. Then applying 

a dense-connected classifier to predict the true class. The experimental results confirm that the ro-

bustness and reliability of the developed technique which is successfully able to classify the induc-

tion motor faults and achieving a classification accuracy of 99.8%. The use of a VGG19network has 

allowed the attributes to be automatically extracted and associated with the decision-making part. 

Furthermore, this model is further compared with other applications based on related topics, it has 

successfully proved the its superiority and robustness. 

Keywords: VGG19; Induction motor thermal images; fault diagnosis; pretrained model; deep learn-

ing networks 

 

1. Introduction with Achieving the Performance 

Induction motors are backbone in the industry applications because of the produc-

tion depended on them. Hence, the early maintenance is required to avoid the motor 

breakdown. Monitoring the condition of the motor regularly can achieve improvement of 

the availability and production system [1]. Since an initial defect is not identified, damage 

could be caused in other motor elements and system collapse which leading in massive 

losses in the production. Standard maintenance is required for the machines to achieve 

high level of production. This maintenance includes condition monitoring approaches 

and artificial intelligence techniques based on fault diagnosis.  

Induction motor fault diagnosis is a topic that may be researched based on three dif-

ferent categories of attractive research: fault diagnosis based on knowledge, and fault di-

agnosis based on models, fault diagnosis based on the signal. A hybrid model could be 

created via the combining of these different approaches [2]. Some approaches based on 

modelling and identification are utilized in the diagnosis phase, during the determination 

processor in the industry based individual component. So, the examination of the con-

sistency across anticipated systems can be establish the cause of the presented failure. 
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Briefly, some domain techniques have been applied by considering the system pattern in 

fault diagnosis approaches based on signal rather than dealing with system-based models 

[3]. The knowledge-based fault diagnosis approach, in contrast to the model-based and 

signal-based fault detection methods, does not require an accurate model or signal pattern 

in order to do the diagnosis. On the other hand, for establishing a link between raw data 

and the outcome, a historical process is required in knowledge-based fault diagnosis ap-

proach. The methodology of excitation fault diagnosis is achieved by installation multiple 

sensors precisely for data acquisition. Next, this data is processed to verify the type of the 

fault. Generally, the methodology of fault diagnosis is performed by following three steps: 

data collection, extraction, and selection the optimum features, and fault classification. In 

data collection step, data is captured when the machine is running using a specific sensor 

such as current transformer to collect the current data and cameras to capture thermal 

image data. Traditionally, feature extraction is implemented through an accurate domain 

such as time domain, frequency domain, and time-frequency domain then these features 

are further processed using feature selection algorithms. In fault classification step, the 

obtained features are employed to train the traditional machine learning classifiers to pre-

dict the correct class. With the continuing growth of intelligent fault diagnosis, several 

fault diagnosis systems such as expert system has emerged [4]. Artificial neural network 

was developed in [5], in [6] an efficient application using KNN was proposed, in [7] an-

other fault diagnosis model applying SVM classifier is presented, a robust model in [8] 

based on the use of random forest classifier is anticipated to diagnose multiple faults, and 

recent model combines the current and vibration signals with invasive weed optimization 

algorithm is suggested in [9,10]. These traditional machine learning algorithms on the 

other hand, have a restricted ability to analyze all data that has been acquired by the sen-

sors [11]. In addition, these approaches use feature extraction and feature selection to gen-

erate insufficient classifiers which are based on handcrafted features and human feature 

selection that is inadequate. What is more, it has been reported in many research studies 

that the use of handcrafted features with different categorization tasks is a specific task-

based approach, which means that features that are utilized to accurately predict the 

model outcomes under specific conditions are unsuitable for the use in other scenarios 

[12]. Moreover, it is hard to come up with a collection of attributes that are capable to 

produce accurate predictions under all scenarios. As a result of its formidable capabilities, 

deep learning (DL) is an effective way to tackle these challenges [13]. DL application is 

performed without the assistance of human engineers which investigates the first attrib-

utes for classification stage by exploring them directly from the data that has been col-

lected by the sensors [14]. In addition, in the training process, the architecture of the deep 

network can select automatically optimum attributes that make an accurate prediction in 

the classification part. In recent years, DL has become increasingly prominent in the field 

of computer science due to its increased processing power [15]. Various DL algorithms 

have been proposed in many science areas such as computer vision [16], natural language 

processing [17], and games [18]. In addition to this, DL has shown itself to be a promising 

candidate in the area of defect detection [19] for example the use of Convolutional Neural 

Network (CNN) in [20], in [21] another kind of DL network so-called Recurrent Neural 

Network (RNN) is proposed, in [22] Deep Boltzmann Machine technique (BDM) is pre-

sented, and Deep Belief Network (DBN) is considered for creating an efficient model in 

[22]. Despite the reality that DL models have proven the effective applications in machine 

fault diagnosis interests, however there are still issues with this approach. For example, 

most deep models that have been utilized in most of the publications cited in above papers 

have small number of hidden layers. Additionally, when the number and size of hidden 

layers increase, the number of the network parameters will be affected and resulting in 

involving a large amount of data for an efficient training process. However, deep net-

works with more than ten hidden layers have not been developed yet, and hyperparam-

eter tuning influences the performance of the model. Hence, transfer learning methodol-

ogy (TL) is applied to overcome this problem. This technique can be made using deep 
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neural network for extracting high-level features from the original data (raw data) [23]. 

Moreover, the challenge of fault diagnosis presents opportunities for deep transfer learn-

ing to deliver potentially useful solutions. Many engineering field and scientific chal-

lenges such as text classification and spam filtering have shown the transfer learning 

method’s excellence and robustness [24]. Another factor to be considered is deep transfer 

learning’s layer-by-layer learning structure can allow it to build large data representations 

which makes it possible for the performance of the fault diagnosis to be greatly improved 

with reduction in the extraction and training error [25]. According to the knowledge that 

have been studied and reported, the VGG19 model-based-networks that are paired with 

the thermal imaging data have not been the subject of any published research for the pur-

pose of fault diagnosis in induction motor. Hence, this research work proposes a new ap-

proach for induction motor fault detection which is built based on combination of the 

induction motor thermal images with pre-trained model as feature extractor based on Vis-

ual Geometry Group (VGG). The contribution of this research is to present an efficient 

fault diagnosis application to identify different induction motor conditions. The presented 

model uses thermal images that further pre-processed by applying data augmentation 

technique, deep transfer learning model based the pre-trained (VGG19) network, and the 

adjusted densely connected layer for the training and classifying the model. This model 

uses many deep hidden layers to learn hierarchical representations for achieving accurate 

model. The performance of the proposed application applying pre-rained model is vali-

dated using thermal images of the induction motor. 

The remainder of this paper is presented as follow: Related work is in section 2. Pro-

posed Model is presented in section 3. Materials and methods are in section 4. Section 5 

reports the results in detail. Discussion is provided in section 6. Lastly, the conclusion is 

given in section 7. 

2. Related Work 

Thermal images of induction motors have been used in several studies and research 

projects to successfully identify flaws in the motors. [26]. However, a few research appli-

cations combining thermal images and deep transfer learning approaches (DTL) have 

been attained for induction motor fault diagnosis task. Model-based transfer learning is a 

method for transferring previously learnt model parameters to new datasets in order to 

improve training efficiency. This technique takes into consideration the correlation be-

tween two datasets for further increasing the overall training accuracy by using this tech-

nique. A new fault detection model was proposed by Yang [27], which uses transfer learn-

ing network and the trained parameters for new training model for decreasing both the 

training time and training data. A high accurate model using transfer learning was sug-

gested in [28] using sensor data that converted to images. The obtained results achieved 

classification accuracy near 100%. In [29] deep learning model was proposed to solve cross 

domain data learning using vibration data of 48 bearing. The experimental result has 

achieved classification accuracy of 93%. In [30] another deep learning model is suggested 

using 1-D signal for machine fault diagnosis and classification. VGG19 has achieved ex-

cellent result in the experiments of the gearbox. In addition, a novel model-based CNN 

for multiple faults of induction was proposed in [31] using the current signal. The results 

demonstrated this model outperforms the other methods based on the state of the art. In 

this work, a motor fault diagnosis framework based on deep transfer learning model is 

proposed using thermal images. 

3. Proposed Model 

Deep CNNs are used to build the proposed frame for detecting the operational con-

ditions of the induction motor with great precision and accuracy applying thermal images 

as input. As mentioned earlier, transfer learning network based on pre-trained model can 

help for performance improvement. This paper proposes a pipeline that diagnoses the 
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failure of the induction motor automatically from the thermal images. The procedure of 

this application is presented in Figure 1, which includes capturing the thermal images, 

preparing the data, building the pretrained model by applying VGG19, and model classi-

fication. Deep CNN that generated by Oxford visual geometry group VGG in [23] is im-

plemented in this work as pretrained model. This network has 19 layers, and it is trained 

on ImageNet based weight. More convolutional layers have been added for fine tuning 

the thermal images data. First, the pretrained model is tuned after removing some layers 

of the pretrained and replacing them with output layer that has the same size as the num-

ber motor faults (conditions). The output layer that just added is weighted randomly. The 

earlier layers of this network are frozen in the training process and the weights are set to 

ImageNet for reducing the error between the true and the predicted labels. The testing 

dataset is utilized in classification stage to validate the robustness of the proposed model 

based on the induction motor conditions. 

 

Figure 2. the proposed framework for fault detection applying VGG-19. 
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4. Materials and Methods 

4.1. Data Collection 

During the course of this investigation, thermal images of the induction motor were 

carefully acquired with the consideration of both the healthy and its faulty states, as de-

tailed in Table 1. The motor was tested in the laboratory based on two different speeds, 

namely 1480 and 1380 revolutions per minute. The examinations were performed in the 

lab of Cardiff University, which is located in the United Kingdom. Figure 2 depicts the 

testing apparatus. On the bearing inner and outer races, an artificial pit measuring 0.25 

centi-meters was created to simulate the inner bearing fault (IBF) and outer bearing faults 

(OBF) as seen in Figures 3a and Figure 3b; respectively. The ball bearing fault (BBF) as 

displayed in Figure 3c a single ball was removed from its cage in the bearing to make it. 

A broken rotor bar fault (1BRBF) as seen in Figure 4, was accomplished by drilling a cavity 

into one bar of the motor rotor. This cavity which has a certain (cm) in depth and a certain 

(cm) in diameter. For the fifth and eighth instances of broken rotor bar failures, the same 

technique was used. That means five bars were drilled in order to generate five broken 

rotor bar faults (5BRBF) as shown in Figure 4b, and eight bars were bored as shown in 

Figure 4c to produce eight broken rotor bar’s fault (8BRBF). Multi-induction motor faults 

are also studied in this research. These faults are specifically produced so that they could 

be shown as a new state of the motor. As an example, labels 8 and 9 include the inner 

bearing fault with a broken rotor bar into one label (IBF+1BRBF), and the outer bearing 

fault with five broken rotor bars in one label (OBF+5BRBF); respectively. In Both of these 

labels the rotor has a broken rotor bar fault. 

 

Figure 2. Experimental test rig. 

A FLIR thermal camera was used to capture the thermal images, and it was posi-

tioned appropriately on the test rig at a certain distance away from the induction motor 

center as shown on the test rig. Several camera locations were tried before the final one 

was selected, with the quality of each one factored considered. The thermal images were 

captured at two speeds after the engine had run for fifteen minutes and then the images 

stored in JPEG format with size pixel of 320 × 240 as displayed in Figure 5. 
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Figure 3. Arificial bearing faults (a) Outer bearing fault, (b) Inner bearing fault, (c) Ball bearing fault. 

 

Figure 4. Arificial rotor faults (a) One broken rotor bar fault, (b) Five broken rotor bars fault, (c) 

Eight broken rotor bars fault. 

 

Figure 5. Thermal images. (a) Healthy motor run at speed 1480rpm, (b) Motor has inner bearing 

fault and run at speed 1380 rpm. 
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Table 1. Motor Conditions. 

Fault mode 
Motor load 

(rpm) 
Images No. Class label 

Normal motor 1480/1380 250 1 

IBF 1480/1380 250 2 

OBF 1480/1380 250 3 

BBF 1480/1380 250 4 

1BRBF 1480/1380 250 5 

5BRBF 1480/1380 250 6 

8BRBF 1480/1380 250 7 

IBF+1BRBF 1480/1380 250 8 

OBF+5BRBF 1480/1380 250 9 

BBF+8BRBF 1480/1380 250 10 

4.2. Deep Convolutional Neural Network Architecture based on VGG-19. 

When the convolutional neural network is built from scratch, there will be some pros 

and cons considering large amount of data. However, the use of pre-trained models can 

achieve promising results due to the limitation of the dataset.  

Transfer learning models can help to use the existing machine learning algorithms. 

Many techniques can be used to perform transfer learning for example by reprocessing 

the model for feature extraction which means that only the fully connected classifier is 

trained.  

According to recent reports, the VGG-19 CNN architecture achieves great accuracy 

when it is processed on the wight of ImageNet. To train the VGG-19 model, it uses the 

ImageNet dataset of 1.2 million general object images from 1,000 different object catego-

ries [32]. Moreover, this network contains 19 layers consisting of: the fully connected layer, 

max-pooling, and the convolutional layer. The trained convolution base is employed with 

a densely connected classifier. The standard version of the VGG-19 is displayed in Figure 

6. Using convolutional layers can apply a convolution operation across an image (feature 

map) and perform the operation at each location, transferring the result to the next layer 

in the process [33]. Convolutional filters are trainable feature extractors with a 3 ×3 size 

and each convolutional layer is followed by a ReLU (rectified linear unit) activation func-

tion and a max-pooling procedure. ReLU is now the most widely used nonlinear activa-

tion function and it can be defined as given in next equation: 

f(x) = max (0, x) (1) 

Where x is the neuron input. 

After down sampling, the max-pooling layer is applied to the model with a filter size 

of 2 × 2. Each neuron in the densely connected layer gets input from all the neurons in the 

previous layer. The activation function of this densely-connected layer must be specified 

depending on the class type [34]. 
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Figure 6. The pre-trained VGG-19 structure. 

4.3. Data Pre-Processing and Augmentation 

A dataset of 10 classes which each with 500 images was created based on various 

motor conditions. The original image is cropped to fit within the bounding box, and the 

resulting images are resized to 224 by 224 which is the same input size required by the 

classification network. Then, the images are pre-processed on other layer with class im-

balance technique and data augmentation technique. By controlling the image magnifica-

tion, horizontal flip, rotation, translation, and orientation, the overall outcome is influ-

enced with further model improvement. 

4.4. Model Evaluation 

This work is presented to create a unique application which utilizes thermal images 

and a pre-trained CNN network-based model as a feature extractor that was done in Py-

thon software installed on a 2GHz GPU PC. The ImageNet dataset’s weight is used to 

train this model. Then, transferring the energy of this data to the classification part for 

model prediction. VGG-19 algorithm is trained using ReLU activation and dropout. Cat-

egorical cross-entropy (CE) and SoftMax function (s) were applied as it is a multi-class 

classification task. The error rate between the original and predicted values is simply 

achieved [35]. This. 

The categorical cross-entropy (CE) and SoftMax (s) are calculated using the following 

formulas: 

CE = − ∑ 𝑡𝑖 log(𝑓(𝑠)𝑖)
𝐶
𝑖  (2) 

Where 𝑡𝑖 is the ground truth, and 𝑓(𝑠)𝑖 is the standard SoftMax. 

𝑓(𝑠)𝑖 =  
𝑒𝑠𝑖

∑ 𝑒
𝑠𝑗 𝐶

𝑖

 (3) 

Where 𝒔𝒊 presents the given the class, 𝒔𝒋 is the scores derived from the net for each 

class 
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Adam optimizer which is extension of the stochastic gradient descent is chosen to 

implement the presented work. This optimizer can update the weights of the neurons by 

using backpropagation techniques where the derivative of the error is calculated with re-

spect to each weight. The main key of using this optimizer is to achieve an optimum 

weight with maximum accuracy and minimum loss. Some evaluation matrices have uti-

lized to assess the proposed application as given in the following equations: 

Specificity = 
TN

FP+TN
 (4) 

Overall accuracy = 
TP+TN

TP+FP+TN+FN
 (5) 

Precision = 
TP

TP+FP
 (6) 

Sensitivity = 
TP

TP+FN
 (7) 

F1_score = 2×
Precision × Sensitivity

Precision+ Sensitivity
 (8) 

Where TP is the true positive prediction, FP is false positive predictions, TN presents 

the true negative predictions, and the false negative predictions is stated by FN. 

5. Results 

The proposed model of fault diagnosis has been investigated using induction motor 

thermal images. Thermal images with different motor conditions were inputted into the 

VGG-12 pre-trained model to process the energy of the extracted features for predicting 

the correct class. The classification result based on the use of this model is provided in 

Table 2 when the model is trained with categorical cross entropy function, adam optimizer 

on SoftMax classifier. From the achieved results, it can conclude that the proposed pre-

trained network VGG-19 with trained ImageNet has accomplished a satisfactory applica-

tion to diagnose induction motor faults. The experimental result has been attained average 

accuracy of 99.8% with training loss equal to 0.0144. The other evaluation metrics have 

been presented the same outcome manner. The validation accuracy and loss based on the 

same epochs number are displayed in Figure 7, and 8; respectively. 

Table 2. Model Classification Result. 

Train the model with VGG-19 

 score Batch size epochs 

Specificity (%) 99.9 64 40 

Accuracy (%) 99.8 64 40 

Precision (%) 98 64 40 

Sensitivity (%) 97.0 64 40 

F1-score (%) 94.2 64 40 

 

According to the comparison with current methods, the suggested method is more 

accurate than the published deep learning methos based (CNN). A new pre-trained model 

has been proposed in [36] which uses different 48 bearings fault. This model has given 

average accuracy 93%. In [37] a fault diagnosis model based on transfer learning-based 

knowledge is proposed by Kumar and has achieved an accuracy of 99.40%. this model 

was further trained by k nearest neighbor classier, support vector machine, and random 

forest and have achieved accuracy of 78.60%, 90%, and 89.40; respectively. A novel and ac-

curate deep learning framework for fault diagnosis was presented by Shao in [38]. This 

model has been investigated on three different mechanical datasets including the gearbox 

and bearing datasets. The model has archived accuracies from 94.8% to 99.64%. In [39] a 

pre-trained-VGG19 model was proposed by Wen for fault diagnosis. The model has con-

verted famous time domain signals from CWRU to images and processing them by 
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VGG19 and SoftMax classifier. A 99.175% prediction accuracy has achieved from the pre-

sented model. another fault diagnosis model was suggested by Grover for rolling element 

bearing in [40]. The model uses four pretrained models namely Alexnet, VGG-19, Google 

Net, and ResNet-50. VGG-19 has achieved a validation accuracy of 99.7% by applying 

Adam optimizer and 94.1% by applying SGD optimizer with few epochs’ numbers. In [41] 

a novel transfer learning model for fault detection was proposed. The model has tested on 

current signals and has achieved an accuracy of 99.4%. in this work, the proposed model 

has achieved a higher classification performance when it is compared to the aforemen-

tioned models which it has achieved an accuracy of 99.8%. 

 

Figure 7. VGG-19 based model accuracy curve. 

 

Figure 8. VGG-19 based model loss curve. 

6. Discussion  

Although many automated machine learning techniques have been introduced for 

diagnosing the induction motor faults, there is still a lack of solutions to predict the motor 
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conditions. Compared to other methods, it is successfully employed in the content of this 

work which it is superior since it requires less human involvement while yet producing 

accurate predictions. Moreover, training a model via transfer learning yields better re-

sults. Transfer learning has also compensated the limitation of the traditional techniques 

and deep CNN networks.  

7. Conclusions 

In this work, a new application for fault diagnosis based deep learning network is 

proposed. This application which combines thermal images, deep transfer learning net-

work, and densely connected classifier. This application has applied VGG-19 to construct 

the first model features from the images directly to achieve a fast and robust classification 

model. The highest classification accuracy of 99.80% was achieved by combining the sug-

gested pre-trained network with the densely connected classifier.  

Concisely, the classification method’s accuracy is reasonable, suggesting this model 

could be employed to identify induction motor defects using thermal imaging data. The 

VGG-19 network’s resilience will be evaluated in future studies using more comprehen-

sive data, not just with transfer learning model, but also by fine-tuning the network’s 

properties. Other deeper networks based on detection time is built considering the pre-

diction challenge. 
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